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ABSTRACT

The Cepheid variable star SZ Tauri was photometrically observed at Mount Laguna
Observatory in November, 2004, and new elements of its pulsation and physical properties
were determined. The pulsation was found to have a period of P = 3.1488 £ 0.0033 days,
with an epoch in the Johnson V passband of HJD 2,453,316.5166. Epoch lagging of the
UBVRI passbands was discovered, and theoretical analysis and modeling is presented which
explains it. This should ultimately lead to improvement in the accuracy of the period-
luminosity relationship, as well as lend observational insight into stellar photospheric
structure and behaviour. Baade-Wesselink and Balona analyses were carried out with

archival radial velocity data, and the radii were determined to be 37.9 * 2.1 Ry, and 42.5 *

Sun

2.3 R, respectively. The Balona radius is suggested as the more accurate of the two. This

Sun

radius confirms SZ Tau’s pulsation mode as being in the first overtone.
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For everyone must see
that astronomy compels the soul to look upwards
and leads us from this world

to anothet.

Plato
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Chapter 1: Historical Overview

1.1 Development of Modern Theory

The prototype for the class of pulsating stars known as Cepheids is 8 Cepheli, a star
that was first observed to vary in light by a young English astronomer named John
Goodricke, on October 19, 1784 (Goodricke 1786). In the following ten months,
Goodricke observed the star on at least one hundred separate occasions - reportedly a record
in the English clime - but this devotion was ultimately Goodricke’s end, as “in the
consequence of exposure to night air in astronomical observations” (Fernie 1985)1, he
caught pneumonia and died at the early age of twenty-one, on April 20, 1786. The term
“Cepheid” was coined by a Miss Clerke (as cited by Brunt (1913)), who used it to classify
short-period variable stars in which the rise to maximum brightness from minimum
occupied less than half of the period of variation. This taxonomy has subsequently been
changed to include a wider class of stars whose pulsation is due to an envelope ionization
mechanism, as described below.

In 1894, Belopolsky (1894) discovered the radial velocity variations of 8 Cephei
through spectral analysis, and in 1899 Schwarzschild” found that changes in the brightness of

a Cepheid accompanied changes in the effective temperature. However, this was considered

! Original source of quotation not specified.
2 See Fernie, 1985.



evidence that Cepheids were in binary systems, though non-eclipsing. The light and
temperature variation was thought to be due to tidal effects from the companion, even
though a second spectrum could never be found. However, already by 1879 the German
physicist August Ritter’ had suggested that the variations in light could be due to the radial
pulsations brought about via adiabatic changes in the effective temperature, and when
Shapley (1914) proposed the pulsation hypothesis as a serious alternative to the other
theories, that perspective started to gain wider acceptance. Shapley’s reasoning was based on
an analysis of observed facts and the known problems with the other theories. For example,
the newly developed classification system that sorted stars into dwarfs and giants placed
Cepheids well into the supergiant class (based on work by Russell and Hertzsprung), and this
placed the theoretical orbits of the companions of Cepheids well inside the Cepheid
atmospheres. The light variations of Cepheids then quickly gained acceptance as being due
to the dynamical effects of a single star, although the exact physical nature of the effect had
to await a fundamental explanation almost fifty years later. However, by 1918 Eddington
had published two papers (Eddington 1917, 1918) which brought the pulsation hypothesis
to the level of a “major astrophysical theory” (Rosseland 1949). This work was based on the
adiabatic pulsations of a gaseous star with a given density distribution, as opposed to a
homogeneous star, as in the case of Ritter’s earlier work.

Even without a clear understanding of the mechanism of Cepheid pulsation, these
stars rose to a centrally important status in astronomy. In 1912, Henrietta Leavitt (Leavitt &

Pickering 1912) discovered that Cepheids in the Small Magellanic Cloud showed a clear

3 See Rosseland, 1949.



relationship between period and apparent luminosity. Hertzsprung later used this relation to
determine the distance to the Small Magellanic Cloud, Shapley for that to both Clouds and a
number of globular clusters, and Hubble for the distance to the Andromeda Galaxy and
other galactic systems. This allowed for proof of the existence of extragalactic systems, and
almost overnight the dimension of the universe grew to a previously incredulous scale. The
study of Cepheids has also shed light on the processes of stellar evolution and stellar
atmospheric structure.

The works by Baker & Kippenhahn (1962) and by Cox (1963) and Zhevakin (1963)
finally explained the physical cause of Cepheid pulsation in terms of non-adiabatic opacity
effects of an ionizing element within the stellar atmospheric envelope. Earlier ground work
by Eddington (1941a, 1941b, 1942) had suggested a mechanism similar to this; however, he
had identified hydrogen as the crucial element, and also considered core nuclear reactions as
being the driving source behind the pulsations, with hydrogen ionization acting as only a
damping effect. In fact, nuclear reactions provide only the mean luminosity of the star, and
have no effect on surface pulsations due to strong interior damping and due to the highly
centralized nature of the nuclear core in the late-type stars to which Cepheids belong (Cox
1985; Epstein 1950). The pulsations actually originate in the outer layers of the star, and the
crucial ionizing element was identified as singly ionized helium, He II (Cox 1980).

The envelope ionization mechanism absorbs heat from the layer upon compression,
and releases heat upon expansion. Because the source of heat ultimately comes from the
luminosity of the nuclear reactions many layers below, the only way to store and lose heat is
through modulation of the radiation flowing through the upper atmosphere. A driving

mechanism can be set up only in a transition region between quasi-adiabacity and non-



adiabacity (Cox 1985), and where coincidentally there is enough ionizing material (i.e., He II)
for the process to have a strong enough physical influence. The lower limit for the
concentration of helium is in the vicinity of ten to fifteen percent, with 50% of it being
ionized (Kukarkin 1975). The depth of the region of critical He II to He III ionization is
that corresponding to a temperature of 35000 to 55000 K (Bohm-Vitense 1958; Zhevakin
1953), which is far above the core nuclear reactions but still well below the radiative
photospheric layers. Because this happens at only a very narrowly defined window of
effective surface temperature, the “instability strip” on the Hertzsprung-Russell diagram has
a nearly vertical orientation, shown in Figure 1-1 below. There is only a minor dependence
on the other physical parameters, such as gravity. The instability strip contains almost all the
types of pulsating variable stars on the H-R diagram including Cepheid, RR Lyrae, W
Virginis, ZZ Ceti, RV Tauri, Delta Scuti, SX Phoenicis, and rapidly oscillating Ap stars. The
existence of the red edge of the pulsation instability strip is due to the damping effect of
strong convection currents in the cooler stars (Dupree 1977). The existence of the blue edge
is due to the surface temperature of such stars being too high for the helium ionization
mechanism to occur, such that the ionization region is too close to the surface or doesn’t

even exist at all.
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Figure 1-1: Hertzsprung-Russell diagram. The instability strip cuts though almost the entire range of
stellar classes. Image source: http://web.njit.edu/~dgary/321/Lecture6.html, copied with permission.
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There are ultimately three mechanisms which provide the instability and driving
force of Cepheid pulsation. The dominant ionization effect is to provide another degree of
freedom to the gas of the atmosphere, so that under compression the energy does not all go
to thermal kinetic energy, as it would adiabatically. Therefore, the gas remains relatively cool
upon compression and causes the opacity in the region to increase, instead of decreasing as it

normally would. Under adiabatic conditions the opacity, commonly referred to as the mass

. . . 1 T
absorption coefficient » (kappa), varies as =r but due to the ionization the temperature

remains relatively constant. But opacity also varies linearly with density, and therefore kappa
will increase upon compression. This is referred to as the “kappa mechanism” (Baker &
Kippenhahn 1962). The increase of kappa upon compression traps energy inside the region
(it ionizes the gas), and causes the pressure upon expansion to be larger than if it had been
only adiabatic. The effect “pumps” the pulsation phase as the gas cools by transferring the
ionization energy back into the region as radiative and then thermal energy. Second, the
relative coolness of the gas causes the layer to radiate less energy, so that it and higher layers
compress more easily. This effect is called the “gamma mechanism” (Cox et al. 19606).
Lastly, when compressed, the surface area of the star is reduced, so that the total radiation
emitted by the star is also less. This serves to further trap the radiation inside the star and
pump the cycle upon expansion, and this effect known as the “r (radius) mechanism” (Baker
19606).

The three mechanisms work together to produce a stable oscillation. Suppose some
initial, static state of the star and of the critical He II region in particular. Although the

region might be initially static, it is not in a stable equilibrium because of the quasi-adiabatic



state induced by the potential ionization of the He II. The region is unstable to pressure and
temperature fluctuations. Now upon some perturbation, suppose it to be toward a state of
higher compression, the gas partly becomes doubly ionized (He II to He III) instead of only
warming. There is then not enough thermally induced counter-pressure to retard the
compression, even though the density is increasing. The thermal energy is used to ionize the
gas instead. The relative coolness of the gas, its now-smaller surface area, and the local
increase in opacity means that less energy is radiated to higher layers, further destabilizing
the outer envelope toward compression. But while the region is compressing less energy is
radiated outwards from it, and so more energy is trapped below and the radiation pressure
builds. This combines with the slowly increasing (i.e., quasi-adiabatically) temperature until a
crossover point is reached such that the pressure differential begins to point outwards, and
the region then begins to re-expand or “bounce” back. But instead of a simple thermal
increase in volume, the expansion gets pumped by the higher than normal radiative pressure
from below, and further by the deionization of the gas. The de-ionizing gas provides
additional energy, i.e. heat, to the region. This pumps the thermal contribution of the
expansion, and so the region becomes unstable towards it. When enough gas has de-ionized
and the surface area of the star becomes large enough, the pump disappears and the region
again becomes unstable toward compression, thus setting up a repeating cycle (Cox, et al.
1966). The He II ionization mechanism thus acts as an engine, providing heat to the region
upon expansion, and absorbing heat upon compression. But this can only occur at the very
delicate temperature, compositional, and structural balance of stars of the appropriate mass

and position on the H-R diagram.



There are important observational consequences to this mechanism of pulsation, the
main one being a de-coupling between the common thermodynamic quantities of density
and temperature. Belopolsky (1894) was the first to note the general phase relationship
between the radial velocity and light curves for Cepheids — that maximum radial velocity
occurs near the time of minimum light. Integration of the radial velocity curve gives the
more intuitive parameter of radial displacement. In this form the relation shows that the
time of maximum temperature occurs some time affer the that of minimum radius.
However, this relation was not fully appreciated until the pulsation theory gained in
popularity, at which point it was thought to present a problem for the theory (Kukarkin
1975; Rosseland 1949). The problem was that, under adiabatic conditions, a state of
minimum radius should correspond to one of maximum density. But at maximum density,
the thermodynamic temperature should be maximized as well. Further confusion worsened
this issue, with the thought that the time of maximum brightness should also correspond to
the time of maximum temperature (Rosseland 1949). This confusion may still exist today.
However, even if the pulsation was completely adiabatic, maximum luminosity should not
occur at maximum temperature. Luminosity is dependent on both temperature and radius,
and so will maximize at some time other than either of those parameters’ individual maxima.

The modern quasi-adiabatic theory of pulsation and the depth at which the
pulsations originate successfully explain the lag of maximum temperature to minimum
radius. The heating of the upper layers caused by the deionization of the gas below, which
occurs only affer the star begins to re-expand, can easily be seen to shift the time of

maximum temperature to a latter phase. And the depth at which this heating occurs



necessitates a time lag for the process to be reflected in the higher photospheric layers,
where the surface brightness and temperature are actually observationally measured.

Already by 1926, however, Baade (1926) had developed a method of testing the
pulsation theory of Cepheid variability. First, he correctly recognized that the brightness of
the star comes from both temperature and radius. The pulsation theory implied that the
changes in brightness were due to changes in both of these quantities. Because the
temperature variation could be measured through the colour indices, it was possible to
separate the two effects from the luminosity curve and derive a plot of the radial variation
with phase. Second, it was possible to independently derive a plot of the radial variation
through integration of the radial velocity curve. If the pulsation theory were true, the two
plots should, at least qualitatively, agree in phase. As an aside from the test, if the
temperature contribution was propetly separated from the luminosity curve, it would be
possible to derive a radius for the Cepheid as well. For lack of suitable data Baade did not
undertake any observational proof of the test, but subsequent work by Becker, van Hoof,
and Wesselink (Becker & Strohmeier 1940; van Hoof 1943; Wesselink 1946b) confirmed the
pulsation hypothesis by this method.

Bottlinger (1928) had made a first attempt at the test in 1928 using observations of {
Geminorum, but failed to find the two curves in phase. However, Baade’s test required the
assumption that stars radiate as blackbodies, so Bottlinger concluded that that assumption
was incorrect instead of blaming the pulsation hypothesis. Stars do approximately radiate as
blackbodies, but not to the extent needed for an accurate separation of the temperature from
the luminosity. Even today, very carefully calibrated colour indices provide a resolution only

on the order of 100 K, and this of the same order as a Cepheids’ change in temperature.
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Both Becker and van Hoof, in separate work, modified Baade’s test so that the only
assumption required was that there exists a single valued relation between the colour index
and surface brightness for all Cepheids. The relation used was that determined
observationally for & Cephei, and was thought to extend to the whole population of
Cepheids. Wesselink simplified this latter postulate, stating his “basic assumption” that there
is a unigue relation between colour and surface brightness for each Cepheid. This allowed for
a more definitive formulation of the radius determination through Baade’s pulsational test,
and has subsequently become known as the Baade-Wesselink method (Baade 1926;
Wesselink 1946a, 1946b, 1946c, 1947). The method has survived in utility to the present day
and has extended itself to further simplification and methodology (Balona 1977; Caccin et al.

1981). See Chapter 2 for further detail.



1.2 SZ Tauri
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The following table lists all the relevant properties of SZ Tau used and/or calculated

in this work.

Quantity

Value

Reference

Current Period (days)

3.1488 + 0.0033

This work (with MLO

photometric data)

Average Period (days)

3.1488236 + 0.0000015

This work (with O-C

analysis)
7.96, 7.39, 6.54, 6.04, 5.52
<U>, <B>, <V>, <R>, <I> + This work
.07, .05, .05, .05, .04
AU, AB, AV, AR, Al .63, .51, .34, .27, .21 This work
6284, 6021, 5747
Effective Temperature (K)
* This work
(max, mean, min)
40, 38, 36
Spectral Type
P P Fo, F7.5, F9 This work
(max, mean, min)
Luminosity Class Ib Supergiant This work
Radius (Ry,,) 425+23 This work
Luminosity (L,,) 2138 = 235 This work
Egv 0.29 Turner (1992)
Mass (Mg,.) 5.72 Sanewal & Rautela (1989)

Table 1-1: List of properties for SZ Tauri.
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SZ Tau is located on the face of Taurus at right ascension 04" 37" 14°.78 and
declination +18" 32 34'.91 (epoch J2000). Tt has been considered a halo member of the
galactic cluster NGC 1647 (Gieren 1985; Turner 1992), although this has been disputed
(Gieren, Fouque, & Gomez 1997). It is a short period low-amplitude s-Cepheid which
displays that type’s characteristic sinusoidal variation in its light curve. The s-Cepheids were
classified originally by Efremov (1968) were all Cepheids with sinusoidal light curves;
however, the General Catalogue of Variable Stars (Khopolov 1985) lists 42 Cepheids with
amplitudes less than AV = 0.5 magnitudes and almost symmetric light curves, and classifies
these as DCEPS (Delta CEPhei S-type)'. They are a relatively rare breed of Cepheid.
Antonello et al. (1990) proposed that these Cepheids were all first-overtone pulsators, but
Platais & Mandushev (1993) report otherwise based on their study of three representative s-
types SU Cas, SZ Tau, and V1726 Cyg. They found that of the three, only SZ Tau appeared
to be an overtone pulsator, and we will see that the derived radius and measured period in
this work confirm that classification. Milone et al. (1999) subsequently determined SU Cas
to be an overtone pulsator, but whether or not all DCEPS are overtone pulsators is still
open to debate (Sachkov 1997). Overtone pulsation is analogous to the harmonic
oscillations of a vibrating string. The fundamental pulsating mode has two fixed nodes at
the extremities of the oscillating medium (i.e., the string or atmosphere), and uniform bulk
motion of the medium occurs between these two points. For a string, the motion of the
pulsation is transverse to the medium, while for a Cepheid atmosphere the motion is radial,

Le., away from and towards the center of the star. The first overtone of pulsation has an

4 Classical Cepheids have asymmetric light curves, larger amplitudes, and longer periods of variation.



13

additional fixed node midway between’ the two fundamental nodes, such that uniform bulk
motion of the medium occurs above and below the additional central node, but in opposite
directions. The extension to even higher modes of pulsation follows obviously. Alcock, et
al. (1995) report on 15 beat Cepheids discovered in the Large Magellanic Cloud pulsating in
the 2" overtone; pulsation modes higher than this are not generally expected, but may be
possible.

SZ Tau has a long history in the study of Cepheid variables’. Its variability was first
reported by Schwarzschild (1910), who gave it the provisional designation of 41.1910 Tauri.
Hertzsprung initially thought the proper motion of the Cepheid to be similar to that of the
Hyades stream, and so the star was considered for further photometric observation by
Munch & Hertzsprung because of the possibility that its parallax could be determined. The

results of those observations (Figure 1-2) were reported by Schwarzschild (1911), who found

the elements for the times of minimum to be J.D. 2,418,724.16 M.E.Z. + 3®.1484E

5> In a pulsating medium of uniform density the additional node will occur exactly half-way between the two
fundamental nodes; in a medium where density is a function of length, the additional node will generally occur
at a point weighted towards the region of higher density.

¢ Though the following is not an exhaustively complete history, it highlights all important developments and
includes the best quality data.

7 “M.E.Z.” is Mitteleuropiische Zeit, or Central European Time. “E” is the epoch number since JD
2,418,724.16 M.E.Z.
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Schwarzschild (1911) P = 3.1484
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Figure 1-2: Photographic light curve of SZ Tauri by Schwarzschild.®

Shapley (1913) subsequently used the 1911 data to explore the hypothesis that the
variation in light was due to an axially-rotating ellipsoidal body. Although he did treat the
body as a limb-darkened star, he did not put forth an explanation as to how such a star
would maintain itself in equilibrium. Although the data could be modeled extremely well
with the predicted photometric variation of such a rotating body, simply because SZ Tau’s
light curve is so neatly sinusoidal, Shapley himself ultimately propounded the pulsation
hypothesis as being the best explanation for the cause of the light variations (Shapley 1914).
Later the same year however, following Shapley’s work, Haynes (1913) further explored the
ellipsoidal-body hypothesis using spectrographic radial velocity measurements taken by

himself at Mt. Hamilton’s Lick Observatory. In addition to establishing that the

8 It is not clear what epoch was used for the determination of the phases. It may not yet have been customary
to place the maximum at phase zero.
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spectrographic variations occurred with the same period as the light variations, he noted the
radical difference in radial velocity between the Hyades stream and SZ Tau (approximately
40km/s), thus indicating that the star was not likely a member of the stream. Haynes briefly
mentions “...it is probable that SZ Tauri should be classified as a Cepheid”. He appears to
be the first to have done so.

Leavitt and Pickering (1914) followed up the analysis of SZ Tau, using their own
archival photographic data from 210 plates taken between 1891 and 1914 at the Harvard

College Observatory, to establish a more precise period for the light variation. They
reported the elements for the times of maximum as J.D. 2,410,000.60 G.M.T. +3%.1487E, a

difference in the period from Schwarzschild’s work easily within the error of either’s

determination (see Table 1-2 on page 22).

Pickering & Leavitt (1914) P = 3.1487

Phase
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L
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Figure 1-3: Photographic light cutve of SZ Tauti by Pickering and Leavitt.?

 Normal values were computed using averages of every 5 successive points from the 210 observations. A re-
determination of the period using the originally published data gives P = 3.14868.
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The final “classic” investigation of SZ Tau was done by Shapley (1916), in
observations of spectral type variations carried out at Mt. Wilson Observatory, in a set of 20
Cepheids. SZ Tau’s classification as a Cepheid was by then widely accepted. Shapley clearly
demonstrated that the spectral type of a Cepheid changes in accordance with the periodic
light and radial velocity variations of the stars, and says in regards to this that it
“...constitute(s) one of the general and fundamental properties of Cepheid variables”. Also,
“The variation in spectrum of a Cepheid is undoubtedly as important a part of the
phenomenon as the fluctuation in light; moreover, it should be as definite a method of
detecting a star’s peculiar variability as the measures of magnitude.” Precise spectral
measurements of most astronomical phenomena, including Cepheids, are now fundamental
in their study.

Using Pickering & Leavitt’s light curve, Shapley superimposed his spectral type
classifications at various points throughout the cycle, indicating G spectral type at minimum
light, F1 to FO at maximum light, A9 one-quarter day after maximum light, and reverting to
G thereafter with a claimed uncertainty in these determinations of one or two tenths of a
spectral interval (Figure 1-4). He indicated that a re-phasing of his data with an increase of 5
seconds in the period would place spectral type A9 a quarter of a day eatlier, to coincide with
the time of maximum light, and that such a change is well within the uncertainty of the light
elements. Indeed, spectral type as a measure of effective temperature would require the
hottest type to occur shortly before the time of maximum light, because for Cepheids the

stellar surface area maximizes approximately 0.3 phase after that.
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Figure 1-4: Spectral type as a function of period, as determined by Shapley (1916).

Beginning in 1929, Robinson (1929, 1930a, 1930b) undertook an investigation of
forty Cepheid light curves utilizing over 30 years of archival photographic data at the
Harvard College Observatory. Leavitt had already done this for SZ Tau up to 1914 (Figure
1-3), so if one assumes that Robinson did not include'’ data previous to this time in his
determination of a new light curve for the star, the light curve and period determined by him
show a marked change from the previous analysis, in that a rise at minimum was manifest at
0.45 phase (Figure 1-5). He also re-reduced Shapley’s spectral observations to the Harvard
system, correcting their phase by his epoch and period, and these new determinations of
spectral type seem to agree with the change of light curve and indicate a possible shift to

carlier spectral type during the rise (Figure 1-6). It should be pointed out that Shapley’s

10 Only normal points and phases are listed in his publications, so it is not possible to check the raw Julian
dates which make up his data.
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observations were done only over SZ Tau’s observational cycle of 1915-1916, whereas
Robinson’s data spans from at least 1914 up to 1930, assuming equal observational density
throughout. That the earliest spectral type correctly occurs before maximum light lends
credence to the fidelity of Robinson’s work. This may indicate that, if the change in the light
curve was real, it appeared near or shortly after the time of Leavitt’s 1914 analysis and
remained a static feature of the oscillation for a long enough period to become evident in the
phased light curve data spanning approximately 15 years, or around 1700 cycles. However,
Collmann (1930) had measurements of SZ Tau taken visually by himself during the 1927-28
observational cycle (Figure 1-7). There is no discernible rise at 0.45 phase and aside from
what are likely outlying data near phase zero, the curve is smooth. If Robinson’s rise at
minimum was real it seems to have disappeared by 1927 and was the only recorded

occurrence of the event.

Robinson (1930) P = 3.149275

Phase

6.8
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7.2
7.3 73 ® o PR
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7.4 ®

Figure 1-5: Photographic light curve of SZ Tauri by Robinson.!!

' The light curve for SZ Tau seems to have a rise at minimum light during this era.
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Figure 1-6: Photographic light curve of SZ Tauri with the spectral type superimposed.!?
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Figure 1-7: Plot of normal points.

The first colour curve for SZ Tau appears to have been determined by Eggen (1951)
in a study of 32 Cepheids brought about through testing of a new “photomultiplier for the
precise measurement of magnitudes and colors of stars” (Eggen 1950). These also appear to
be the first photoelectric data for SZ Tau. He did not compute new light elements for the

data, but used those from the 1948 General Catalogue of Variable Stars in the computation

12'The rise at minimum ligcht may be associated with a change to earlier spectral type.
g y g p p
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of the phases. As sparse as the data are, no rise is seen at minimum and the light variation is

smooth. He indicates the use of “blue” and “yellow” filters in the determination of the

colour curve (Figure 1-8).

6.9

Eggen (1951) P = 3.14913
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Figure 1-8: Eggen’s light and colour curves for SZ tau.

Milone (1967, 1970) and Wamsteker (1972) both have data from the 1965 observing

cycle of SZ Tau. Although structure may be found at the minimum of Wamsteker’s light

curve (Figure 1-10), Milone’s excellent photometry clearly shows a smooth variation

throughout the pulsation (Figure 1-9).

error may be the simplest explanation for the rise seen in Robinson’s data.

Impropetly reduced photometry or observational
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Figure 1-9: Milone’s UBV (Johnson) light curves for SZ Tau..
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Figure 1-10: Wamsteker’s light curve for SZ Tau.

Quality data subsequent to 1965 can be found in Szabados (1977), Moffett & Barnes

(1980), Laney (1992), Bersier et al. (1994a), and Barnes et al. (1997). For all published data in
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which the Julian Day times of observation were recorded along with the magnitudes, the
author has re-determined the pulsational period of the star and listed them, in comparison to
the originally determined values, in Table 1-2. The method used to re-determine the period

and their errors (where possible) is identical to that as discussed in Chapter 3.1.2.

Reference Reported Period Re-determined Period # of Cycles
Schwarzschild (1911) | 3.1484 3.14863 123
Pickering & Leavitt (1914) | 3.1487 3.14868 2590
Milone (1965) | 3.148987 3.1494 £ 0.0006 12
Szabados (1977) | 3.14838 3.1492 £ 0.0004 228
Moffett & Barnes (1980) | 3.14873 3.1492 £ 0.0002 263
Laney (1992) | 3.14873 3.1495 £ 0.0007 214
Bersier et al. (1994) | 3.149138 3.1506 £ 0.0010 29
Barnes et al. (1997) | 3.148727 3.1492 £ 0.0005 80
Postma (2004) | (Chapter 3.1.2) 3.1488 + 0.0033 5
Average" | 3.1488 + 0.0002 3.1493 £ 0.0006 -

Table 1-2: Period Determinations for SZ Tauri.!*

13 The “Reported Period” average is the mean of its values and the error is the standard deviation; its dispersion
is low merely because several values were reported from the same source. The “Re-determined Period”
average has weighted each value by the inverse of their errors, and does not include the 1911 and 1914
determinations because no error can be assigned to them.

14 Schwarzschild’s and Picketing & Leavitt’s single passband data do not allow for determinations of etror on
their periods; the determinations are included for reference, however. The periods reported in Moffett &
Barnes, Laney, and Barnes et al. came from the GCVS - they were not originally determined.
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Almost every author who has studied SZ Tau has commented on an apparently
variable period of light pulsation for the star, as is reflected in the 2™ column of the above
table. However, this author suspects that the supposed changes in period, based solely on
what has been interpreted from the reports in column 2, are perhaps due to nothing more
than different treatments of the data. Whereas changes in Cepheid period are expected and
have undoubtedly been detected in observations of other stars, for at least the case of SZ
Tau the claim is not as well proven as thought. As of 1965 every single period the author re-
determined is equal within experimental error, as seen in column three of Table 1-2. It is
curious that not a single astronomer, out of the 125 or so references in this report (let alone
those in the table), lists or even discusses an error of determination for their reported
periods - this actually seems to be the norm. It not surprising then that the “observed”
minus “computed” (O-C) times of maximum brightness for SZ Tau show the random
residuals as reported by various authors, for example Trammell (1987), Szabados (1991), and
Berdnikov (1997).

It is important to appreciate that the methodology by which one determines a period
and epoch from a set of data has a significant effect on the result. For example, 2™, 3%, 4"
or higher order Fourier polynomials can equally be fitted to a light curve depending on the
quality of the data and shape of the curve, and each will result in a period which is easily
different in the third decimal place. The effect on the calculated time of maximum (the
epoch) is then of at least the same error, which will propagate quickly for a star of short
period or for any star given a long enough era. The density profile of observations have a
significant effect on the computation of the time of maximum also. In Barnes et al. (1997) a

gap in the observations of SZ Tau around the time of maximum results in a poor fit of the
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light curve around that time, and this ultimately results in an improperly determined epoch
and a large O-C residual for those data. Although rates of period change and accuracies of
determination may undoubtedly exceed the “noise” introduced by overlooking such issues,
for at least the case of SZ Tau one must seriously question the vast majority of reports in
which the methodology is not discussed at all, and in which periods and epochs are listed to
apparently arbitrary precision and without errors of determination.

One should appreciate also the subtle fact that a period determination from a set of
data represents merely the average (i.c., best fitting) period for that era. There may well be
short term (on the order of one to several epochs) variations in Cepheid period which are
smoothed over in what are normally sparse observations over a large number of cycles. The
larger error in the period determined from the author’s observations covering only 5 cycles
(despite being the most excellent quality photometry) of pulsation may be reflective of this,
while on the other hand, Leavitt’s best fitting period on poor photometry covering 2590
cycles can be quite well determined. Also, while several authors have commented on SZ
Tau’s “change in period” between Schwarzschild’s and Leavitt’s original determinations, it
appears to be an incorrect assessment: Leavitt’s data come from a time span completely
overlapping that of Schwarzschild’s observations. One must realize that Leavitt’s period is
only an average over the Leavitt and Pickering data, as is Schwarzschild’s period - though,
the latter’s period is likely less accurately determined because it ranges over a much smaller
number of cycles, and is quite likely equal to the former’s period within experimental error
(as can be seen in column 3 of Table 1-2).

It would seem, to the author at least, quite a remarkable feat of precision if a body as

large, tenuous and turbulent as a supergiant star, forty times the diameter of the sun, could
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pulsate in its outermost atmospheric layers to a regularity of milliseconds from one epoch to
the next, as opposed to an average value over many cycles. For pulsars and binary systems, where the
moments of inertia which drive the rotation are astronomically large and require equally large
opposing forces to counteract, this degree of precision from cycle to cycle is not intuitively
unreasonable. Unfortunately, most observing programs of Cepheids are not arranged to
take a large number of accurate brightness measurements over each cycle of pulsation, but
rather take a small number of poorer photometric measurements scattered throughout a
large number of cycles - the frequency of observation is almost always much less than one
per pulsation cycle. Indeed this is adequate for determining the average period over a large
number of cycles and may well lead to a very well determined one, but the knowledge of
cycle-to-cycle variations in period (and pulsation profile) is lost. And because this analysis
does not seem to have ever been done before, there is an undercurrent of perhaps
unjustified belief that a Cepheid variable pulsates to extreme precision in general. This is an
issue worthy of further study.

Giving Schwarzschild’s and Pickering & Leavitt’s re-determined periods reasonable

values of error”®, the author computed a weighed line of best fit through all the re-computed

periods from Table 1-2; this is shown in Figure 1-11. However, the rate of log|P|=-0.17,

when P is expressed in seconds per year, does not agree very well with the predictions from

stellar evolutionary models explored recently by Turner, et al. (2000), for either an overtone

15 Because Pickering and Leavitt’s observations cover such a large number of cycles, the data for that era
produce a very sharply peaked scatter vs. period curve (as the method in Chapter 3.1.2), resulting in what must
be a very well determined average period; the error for the determination was set to 0.0001d. Schwarzschild’s
re-determined period was given an error magnitude of 0.0004d.
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or fundamental pulsator in any crossing of the instability strip. This ambiguity is a common
problem for SZ Tau, as the irregular rates of period change reported by Berdnikov &
Pastukhova (1995), Trammell (1987), and Szabados (1977) can attest to. The radius derived
later in this work does place SZ Tau as an overtone pulsator however, agreeing with results

by Barnes et al. (2003), Sachkov (1997), and Turner (1992) for example.

Rate of Period Change
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Figure 1-11: Possible rate of period change for SZ Tau.!¢

16 The error bars are the 95% confidence interval. The Julian Dates are the means from the respective author’s
dates of observations.
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In a personal communication with the author, David G. Turner (of St. Mary’s
University) kindly provided a spreadsheet tabulation of the results of Berdnikov &
Pastukhova’s (1995) O-C analysis of SZ Tau. The observed epoch determined in this work
was entered into the spreadsheet and can be seen as the last point in Figures 1-12 & 1-13
below. Berdnikov and Pastukhova fit a quadratic polynomial to the O-C data in order to
determine a possible rate of period change for the star, and this was repeated by the author

with the added data point (Figure 1-12). The downward-facing parabola indicates a negative

rate of period change, and its value is -37 £ 4 s/century, or log | P |=—0.43 s/year. This

would place SZ Tau in the second crossing of the Cepheid instability strip if it is an overtone
pulsator (see Turner, et al. (20006)). The average period calculated in the O-C analysis is <P>

= 3.1488236 *+ 0.0000015 days.
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Figure 1-12: Quadratic fit through the O-C determinations of Berdnikov and Pastukhova. The period of the
sinusoidal fit to the residuals is 55.9 years.

Figure 1-13: Linear fit through the O-C data. The period of the sinusoidal fit to the residuals is 75.7 years.
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The residuals of the O-C fits in Figure’s 12 & 13 clearly show a sinusoidal oscillation.
In Figure 13 a linear polynomial was fit to the O-C data instead, in order to determine if it
improved the sinusoidal (i.e., 1" order Fourier) fit of the residuals; the root mean squared
error for the linear residuals fit was 0.181, while for the quadratic residuals fit it was 0.167.
There is visually very little difference between the two fits, but one might consider the
quadratic one to be more physically reasonable as it produces a rate of period change within
expected theoretical limits.

A possible explanation for the oscillating residuals is a light-time variation due to a
binary orbit about a companion star. Based on the sinusoidal fit in Figure 1-12, however,
this hypothesis can be disproven. The period of the oscillation for the quadratic fit is 55.9

years, and Sanewal & Rautela (1989) give an evolutionary mass for SZ Tau of 5.72 Mg,. If

Sun-
we assume a companion of solar mass, Kepler’s Third Law gives a semi-major axis for the
binary orbit of 27.6 au. On the other hand, the amplitude of the sinusoid oscillation is 0.564
days. Under the binary companion hypothesis, this is the light-time difference between
when SZ Tau is closest to us in its orbit and then furthest from us. The amplitude of 0.564
days is equivalent to 97.7 au, and this is will be the diameter of SZ Tau’s orbit about the
barycenter of the binary system projected perpendicularly to the plane of the sky. If the
inclination of the system was near 90" there would be (essentially) no projection, and so 97.7
au is the minimum diameter of the said orbit. The radius about the barycenter of orbit for a
solar mass companion would then be 5.72x48.85 au = 278.4 au, giving a total minimum
semi-major axis of the system of 327.3 au. This result clearly violates the binary companion

hypothesis because the minimum semi-major axis computed here must be smaller than the

actual one computed through Kepler’s Third Law. If we assume a companion mass much
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larger than SZ Tau, so that the projected radius of SZ Tau’s orbit is egual to the total semi-
major axis, Kepler’s Third Law stipulates a companion of at least 31.6 M,,. A star of such
mass would have a luminosity approximately 10° times that of the sun, swamping SZ Tau’s

luminosity of 10> L, and would have a life-time of only a few million years. Thus, there

Sun>
is no reasonable solution for which the binary companion hypothesis can be validated using
the O-C data, and this agrees with other findings by Evans (1985) and Szabados (1985).
One can therefore only suppose evolutionary changes within the star itself as the cause of
the O-C residuals. As an overtone pulsator, one may intuitively suspect that the oscillation
of SZ Tau would not be as stable as, and would be more suspect to various changes than, a
less energetic fundamental-mode pulsation. The worsening with time of the sinusoidal fit to

the O-C residuals (the “Residual Fit Residuals” in the bottom panels of Figures 12 & 13

above) may be indicative of a growing evolutionary effect.
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Chapter 2: Methods of Analysis

An excellent account of the development of the Baade-Wesselink and Balona

methods for determining stellar radii can be found in Gautschy (1987).

2.1 The Baade-Wesselink Method

With the Baade-Wesselink method we wish to determine the phases of equal stellar
colour index of a periodic variable star, which as representative of the effective temperature,
represent phases of equal stellar surface brightness. If at these two phases there is a
difference in the total luminal output of the star as measured through some passband, it
must be due to a difference in the stellar radius between the two phases, the implication
being that the surface area of the emitting source must be either larger or smaller between
them. This leads to a methodology for the determination of the stellar radius in absolute
measure. One does not expect changes in metallicity to affect the spectral intensity
distribution over the short time scale of Cepheid variability, and for low amplitude radial
pulsations pressure effects on the same are also expected to be minor. This is not always the
case however, in particular for the usual (Johnson-type) U and B passbands which are
sensitive to the ionization opacity variations of the Balmer discontinuity at the typical
Cepheid temperatures and pressures. This has naturally been the drive behind the use of

longer-wavelength passbands for surface brightness determinations, so as to avoid such
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opacity effects when determining the variation in magnitude at such phases. Also, longer
wavelength passbands are less sensitive to temperature variations, and more sensitive to
radius variations. However, it can be difficult to form accurate colour index curves out of
IR data because their amplitude variations are so low, making determinations of phases of
equal temperature very poor. This is a crucial requirement for both the Baade-Wesselink
and Balona methods. It is ultimately much more important to be able to separate the
temperature effects from the photometric data than it is the radial effects; the radial
contribution to the light curve is taken into account though the radial velocity data, and so
the photometric data should primarily be used for the separation of the temperature
contribution. Because of the very high sensitivity of the Balmer discontinuity to temperature
at typical Cepheid temperatures, one could argue that U-y'" would make the best colour
index for use in the Baade-Wesselink and Balona methods for determining the radius of the
star. In any case, it is the radial variation between the two phases of equal surface brightness
which is the prominent origin of the magnitude difference between those phases.

That there can be a difference in magnitude at phases of equal colour temperature
has a subtle implication for the nature of the radial pulsation: it must follow that the radial
displacement curve is not conformal with the colour index variation, so that phases of
maximum brightness do not correlate with phases of maximum radius and vice-versa. In
effect, there must be a phase lag between the displacement curve and the colour index and
light curves, the latter two of which are highly conformal to one another (see Figure 3-31 on

page 108 for further discussion). The effective temperature is the overriding determiner in

17 Where ‘y’ is some other, longer wavelength passband. The Johnson U filter transmission profile is centered
directly on top of the Balmer discontinuity, making that filter the most sensitive to temperature variations.
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the Cepheid’s time of maximum brightness, while the radial displacement has a secondary,
lower order effect on the filtered-passband light curve. This can be expected because the
(bolometric) luminosity is effectively dependent on temperature to the fourth power, while
on radius only to the second via the surface area. If there were no phase lag between the
radial displacement curve and the colour index, it would not be possible to formulate a
methodology based on differences in magnitude since such a condition could never exist.
The derivation of the Baade-Wesselink method is quite simple. In general, the
luminal output of a star is dependent on the wavelength of the light observed, its effective

temperature, and its radius (i.e., surface area). So
L(A,T4,R) o F(4,T,)R® 2.1)

where L is the luminosity'®, R is the radius, and F(\,T,;) is some function representing the
surface brightness, and is usually thought to be blackbody but doesn’t necessarily have to be.
For a pulsating star there is a phase dependence on the temperature and radius parameters,
so that T = T.(¢) and R = R(yp)."”

If we convert to magnitudes we have

m=-2.5l0g(L(Z, Ty (#), R(9))) + ¢ =-25l09(F (4, T (P)R(9)*) +C, (22

where the constant of proportionality ‘c’ has been taken out of the logarithm. Then a
difference in magnitude, what will be called here a ‘magnitude index’ (MI), can be found

from

m, =-2.5l0g(L(4, Tq (1), R(e))) = -2.5109(F (4, Ty (2))R(1)*)) +C

18 Luminosity is generally defined bolometrically, so here the A dependence on L is to indicate a
monochromatic or passband luminosity.
19 We could perhaps note that, similar to effective temperature, this radius is also an effective radius.
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and
m, =-2.5l0g(L(4,, T (2,), R(®,))) = —2.510g(F (4,, T« (»,))R(9,)?)) +C,
so that
ML, = m, —m, =2 5log| e (¢2))R(¢2)22
| F (2T (2))R(9)

b

MI,, = —2.5log| el @) ) g0 (R(g) 23)
# . F(A4 T (@1)) R(e) . .

Now when we consider @, = @,, so that T (@) =T (,) and R(¢,) = R(e,), but specify

A, #A,, we obtain the commonly known colour index parameter representative of stellar

effective temperature. For constant-magnitude non-pulsating stars the radius term in (2.3) is
always zero and the temperature is constant with time as well, so that the colour index is a
ratio of fluxes at different wavelengths or integrated wavelength passbands. The ratio at
these wavelengths can be related to simple model blackbody curves in order to obtain an
estimate of the star’s effective temperature.

With the surface brightness term being a function of only wavelength and

temperature, the Baade-Wesselink method determines phases ¢ #¢, but where
T (@) =Ty (@,), as determined via the colour index curve, which itself should not depend

on the radius. In this case, the surface brightness term in (2.3) goes to zero and we are left

with

MI,, = —5Iog[ R(%)j, 2.4)
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As opposed to colour index, (2.4) could be considered a “radius index”, as it is a measure of
the variation in light due to a variation in radius between the two phases of equal surface
brightness. The magnitude difference MI,, is in this case the variation in magnitude
between the two points of phase of equal surface brightness, measured at a singl wavelength
or passband. Differential photometry is therefore wholly sufficient for the purposes here.

Considering the fact that the radius is a periodic function of phase and can be

expected to oscillate about some mean radius R,, we can write R(¢)=R,+0R(p), and

substituting this into (2.4) we have

MI,, = —5log| RetOR(@,) 2.5)
Ry +6R(y) ) ‘

In Chapter 3.2.3 we see how it is possible to derive dR(¢p) from the radial velocity curve
and its integration, and thus we can solve for R, from (2.5) and it will be determined via all-

measurable quantities. Rearranging (2.5) for R, we have

r _ IR(#,)-10 ™" 5R(p)
0~ 10—.2MI2,1 1

: 2.6)

and this is the Baade-Wesselink solution for a periodic variable star’s mean radius.
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2.2 The Balona Method

The Balona Method is essentially the continuous analog of the discrete Baade-
Wesselink method. The Baade-Wesselink method is discrete because only 2 points are
chosen at any single time in the solution for the stellar radius, while the Balona method fits a
continuous function to the entire light, colour, and radial velocity curves.

We begin as before with equation (2.2),

m =-2.5log(L(4, T (#), R(¢))) +¢ = ~2.5l0g(F (4, T (9))R(9)*) +C.
Substituting R(¢) =R, +0R(p) (where R, is the mean radius) expanding the logarithm and
noting that 7 is a function of all of its dependants, we have

m(p) =—-2.5log(F (1, T4 (¢))) —5l0g(R, + 5R(¢)) +cC. 2.7
Now m(¢) is a measured quantity, i.e., it is a light cutve in some filter passband, and in
Chapter 3.2.3 we see how it is possible to detive SR(¢) from the radial velocity curve. We
can assume a linear relationship between the surface brightness term —2.5l0g(F (4, T, (¢)))

and the effective temperature, colour index, and bolometric correction because the range of
variation of a Cepheid’s effective temperature is small (i.e., the exponential dependence on
temperature of the Planck radiation law can accurately be approximated by a linear function).

Then —-2.5l0g(F (A, T4 (¢))) =A-Cl +B, where ‘CI’ is the colour index between two

passbands and ‘A’ and ‘B’ are constants, so that

m(¢) = A-Cl(¢)+B—-5log(R, +oR(¢)), (2.8)
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where the constant ‘c’ in (2.7) has been absorbed into ‘B’. In the past it was necessary to

linearize the logarithm by assuming OR(p) < R,, converting log,, to log, and expanding in

order to facilitate iterative linear least-squares fitting of the relevant light and radial velocity
curves, but this is no longer necessary as non-linear least squares data fitting algorithms and
the computational power to do so now exist. Then (2.8) can be solved numerically (see
Chapter 4.2) for the parameters A, B, and R, and this is the Balona solution for obtaining a
periodic variable star’s radius. Equation (2.8) can just as easily be used to derive the Baade-
Wesselink result of (2.6), which shows the intimate similarity between the two methods.

See Chapter 4 for discussion and application of the Baade-Wesselink and Balona

methods to real data.
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Chapter 3: Data Analysis

3.1 Photometric Reduction and Phasing

3.1.1 Differential Magnitudes from the Mount L.aguna Observatory

Five colour photometry of UBV Johnson and RI Cousins was obtained for SZ Tauri
during a two week observing run at MLO” from November 07 through November 20,
2004. The Smith* 247 (0.6m) Cassegrain f/20 reflector was used with a thermoelectrically
cooled Hammamatsu R943-02 GaAs photomultiplier. Due to SZ Tau’s short period of
approximately 3.14 days, and 10-hour long nights, the phase coverage for this observing run
was neatly complete (Figure 3-1) with small phase gaps occurring at approximately 0.2, 0.52,
and 0.84 phase, and with quadruple overlap occurring at 0, 0.4 and 0.7 phase. Inclement and
“spotty” weather limited the coverage (Figure 3-2), so that 3 nights of observation as well as
some intra-night cloudy periods were lost. However, the quadruple observational
redundancy alleviated some of this loss of phase coverage. As will shortly be shown in the

data presentation, two coverage gaps of about 0.15 phase span occur centered at 0.5 and 0.8,

20 Mount Laguna Observatory, San Diego State University, San Diego, California.
2 Named after Clifford Smith, who founded the SDSU Astronomy Department



at the phases of minimum light and mid-way up the ascending branch of the light curve,

respectively.
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Figure 3-1: Predicted Phase Coverage for MLO run. Observation gaps are denoted by the solid lines.
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Actual Phase Coverage
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Figure 3-2: Actual Phase Coverage

The comparison star used for the differential photometry was HD 29103 (BD +19
740), an F8 star with V magnitude of 7.25 and B-V of 0.52”. This is the same star as used
by Milone (1967, 1970) for a check to HD 29104 (BD +19 742) in his photometric
investigation of SZ Tau; he found mean-standard-errors (m.s.e.) in the difference between
them of £0.002, £0.001, and *£0.002 for differential light data in U, B, and V, respectively,
and standardized magnitudes of V = 7.262 * .002, B-V = .549 * .002, and U-B = .128 *
.002. To obtain UBVRI standardized magnitudes of the comparison star in this work, eight
Landolt (1983) standard stars were observed on the night of UT Nov 20, 2004 in order to
obtain both extinction and transformation coefficients; the stars are listed below in Table

3-1. Most nights proved insufficiently photometric for purposes of standardization of

22 Source: SIMBAD Astronomical Database
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standard star data, and even this night did not produce highly constrained parameters for the

extinction and standardization coefficients; more will be discussed ahead.

Star RA Dec V |BV | UB | VR | R

SA 93-332 15417 03548 [9.789/0.518|-0.024|0.296 | 0.306

SA 94-308 25528 02741 |8.743/0.494 |-0.004 | 0.29 |0.287

SA 95-206 35330 01444 |8.737/0.502| 0.015 | 0.29 |0.285

SA 97-351 55651 01338 [9.783/0.205| 0.084 (0.124|0.142

SA 114-172 224203 00910 |6.969/0.311| 0.105 |{0.187|0.189

SA 114-272 224211 01937 |7.737/0.864| 0.473 | 0.48 | 0.462

SA 96-393 45144 00039 [9.652/0.598| 0.042 | 0.345|0.343

SA 99-358 75357 -02210 1[9.605/0.776| 0.509 |0.432|0.405

Table 3-1: Stars used for the Hardie standardization.



Pairing dX dv | d(b-v) | d(u-b) | d(v-r) | d(r-i) | dV |d(B-V)|d(U-B)|d(V-R)|d(R-]) |d(X(b-v)) | d(X(u-b)) | d(X(v-r)) | d(X(r-i))
332-308 | -0.570 | 0.840 |-0.056-0.217|-0.028 |-0.004|1.046 | 0.024 | -0.020| 0.006 | 0.019| -0.608 -1.037 | -0.228 | 0.239
332-206 | -0.703 | 0.971 |-0.071|-0.287|-0.031|-0.016|1.052 | 0.016 | -0.039| 0.006 | 0.021| -0.764 -1.351 | -0.279 | 0.272
332-206 | 0.011 | 1.040 | 0.018 |-0.006| 0.002 | 0.009 | 1.052| 0.016 |-0.039| 0.006 | 0.021| 0.032 0.006 0.006 | 0.006
332-393 | -0.542 | 0.092 |-0.155|-0.257|-0.064 |-0.068| 0.137|-0.080 | -0.066 | -0.049 |-0.037| -0.754 -1.068 | -0.281 | 0.116
308-206 | 0.581 | 0.200 | 0.074 | 0.211 | 0.030 | 0.013 | 0.006 |-0.008 | -0.019 | 0.000 | 0.002 | 0.640 1.042 0.234 | -0.233
308-206 | -0.133 | 0.131 |-0.016|-0.070(-0.003 |-0.012| 0.006 |-0.008 | -0.019 | 0.000 | 0.002 | -0.156 -0.315 | -0.051 | 0.034
308-393 | 0.028 | -0.748 |-0.099|-0.040 |-0.036 |-0.063|-0.909|-0.104 | -0.046 | -0.055 |-0.056| -0.146 -0.032 | -0.053 | -0.122
206-206 | -0.714 | -0.069 |-0.090|-0.281|-0.033 |-0.026| 0.000 | 0.000 | 0.000 | 0.000 | 0.000| -1.827 -1.967 | -1.877 | -2.012
206-393 | -0.553 | -0.948 |-0.173|-0.251|-0.066 |-0.077|-0.915|-0.096 | -0.027 | -0.055 |-0.058| -0.786 -1.074 | -0.287 | 0.110
206-393 | 0.161 | -0.879 |-0.083| 0.030 |-0.033|-0.051{-0.915|-0.096 | -0.027 | -0.055 |-0.058| 0.010 0.283 -0.002 | -0.156
351-172 | 0.669 | 2.961 |-0.025| 0.166 |-0.034 |-0.039| 2.814 |-0.106 | -0.021 | -0.063 |-0.047| 0.419 1.144 0.078 | -0.424
393-358 | 0.533 | 0.121 |-0.114|-0.263 |-0.048 |-0.036| 0.047 |-0.178 | -0.467 | -0.087 |-0.062| 0.422 0.430 0.143 | -0.238
272-358 | -0.023 | -1.871 | 0.079 |-0.016 | 0.045 | 0.065 |-1.868| 0.088 | -0.036 | 0.048 | 0.057 | 0.067 -0.057 0.043 0.085
206-172 | 0.714 | 1.856 | 0.271| 0.183 | 0.134 | 0.110|1.768 | 0.191 | -0.090 | 0.103 | 0.096 | 1.011 1.240 0.406 | -0.166
308-172 | 0.581 | 1.987 |0.255| 0.113 | 0.131 | 0.098 | 1.774 | 0.183 | -0.109| 0.103 | 0.098 | 0.856 0.926 0.355 | -0.132

Table 3-2: Pairing values for the parameters in the Hardie analysis.
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The extinction equation takes the form
Yo=Y—k -X—-k-X-c (3.1)
where y, is the outside-atmosphere magnitude in any passband, y is the observed-system
magnitude in any (corresponding to the previous) passband, K & k" are the first and second
order coefficients respectively, X is the airmass, and ¢ is the observed-system colour index
(for example, b-v). The airmasses were computed using the rational polynomial given by

Young (1994),

B 1.002432 cos?(z) +0.148386 cos(z) + 0.0096467
cos®(z) +0.149864 cos®(z) +0.0102963 cos(z) +0.000303987

(3.2)

where Z is the zenith distance of the target; Young claims a maximum error (at the horizon)
of 0.0037 airmass. The standardization equation takes the form

Y=Yy, +e(B-V)+J (3.3)
where Y'is the standard magnitude in any passband, ¢ is the standardization coefficient, and
B-17 is the standard system colour index. Employing the Hardie (1962) method of
differencing pairs of standard stars of similar colour index (from Table 3-1, and then Table
3-2) for determining the coefficients, equations (3.1) and (3.3) become

dy, =dy—kdX —k d(Xc) (3.4)

dY =dy,+ed(B-V). (3.5)
Generally, the outside-atmosphere magnitudes 4y, are not known in advance, and so the two
above equations can be combined to give

dY =dy—kdX —k'd(Xc)+ed(B-V). (3.6)
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The parameters 4Y and 4(B-1”) are the previously known standard star data, while 4y, 4X, and
d(X¢) are the measured quantities, and so equation (3.6) can be solved for k,k & &
through linear least squares. In Matlab, the backslash operator effects the linear regression
[k k' g]=[-dX —d(Xc)d(B-V)]\(dY —dy) (3.7)
where all the input parameters are column vectors, and the output estimators are scalar

values. The error matrix was formed to obtain the standard errotrs on the estimators, such

that
E. =vHa' (3.8)
. . 2
o |1 dY, —(dy, —k dX, —k d(Xc); + d(B-V),
- L[ dv -y (Xc), + £d(B-V)) oo
06,06, | 2 o,
where 0,, _ ,,; are the estimators K,k & & from (3.7), and o, are the errors in

measurement. Typically, it is best to use the differences between each known value of 4Y
and their values computed through equation (3.6) (the bracketed quantity in the numerator
of equation (3.9), after the estimators have been found via equation (3.7)) for the o, errors in
measurement; the scalar-valued standard deviation of the differences can alternatively be

used so that g, = g,=...= g,= ¢. Evaluation of equation (3.9) leads to the symmetric square

n

matrix

dx? dX. -d(Xc), dX.-d(B-V).
& R
H - ZdXi-dz(Xc)i Zd(ch)i2 _Zd(Xc)i-dZ(B—V)i (3.10)

oF O; O;

dX; -d(B-V), d(Xc), -d(B-V), d(B-V)?
—Z'( )'—Z(C)'( ); Z( ),

2 2 2
O; O; O;
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and then the diagonal elements £ = /= 7, 2, 3 of equation (3.8) are the standard errors for
k,k" & &, respectively. Finally, ¢ is determined by evaluating equation (3.1) and then

solving (3.3) for the mean value and standard deviation of {. In the evaluations of

equations (3.1) though (3.10) the observed-system colour index ¢ = b-» was used for all
passbands; using passband-colour pairings of # & #-b, b & b-v, v & b-v, r & v-r, and 7 & r-/ did
not significantly affect the results, which are listed in Table 3-3 below along with the ensuing
standard magnitudes calculated for the comparison star. The UBV values match well within

their error to the values as determined by Milone (1970).

Filter-Colour K k” 2 4 HD 29103
U, B-V .733%.044 -.047£.017 -028+.085 | 19.315%.034 7.89%.07
B, B-V 412%.032 -079%.015 .022+.050 20.019£.035 7.79%.05
V,B-V .286*.028 -.081%.015 018£.075 20.249+.034 7.26%.05
R, B-V .234%.018 -078%.012 -036£.074 | 20.230£.031 6.94%.05
I, B-V .212%.026 -.086%.016 -064£.040 | 19.482%.032 6.64%.04

Table 3-3: Extinction and transformation coefficients, and standard magnitudes of the comparison star.
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Differential Airmass Histogram (U data)

130 B
160 B
140 - E
F‘10|:srag9| =378
Ngpslx < 0.02) = 338
120 mean{&x) = 0.008 b
median{8¥) = 0.004

Number of Observations

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Differential Airmass (6X)

Figure 3-3: A histogram of the differential airmasses shows that most observations were done well below 8X =
0.02.

The errors on the parameters in Table 3-3 are quite large, and the resulting precision
of the UBVRI magnitudes for HD 29103 would not generally be considered high enough to
conclude that the star is constant, hadn’t it already been previously determined. In the end,
most nights were not of high enough photometric quality to allow the use of the first order
coefficients from Table 3-3 for all of them, and so each night was treated separately for
those using the Bouguer method as described below. Fortunately, the difference in air mass
between SZ Tau and HD 29103 was quite small (as shown above in Figure 3-3) so that the

differential extinction effects were minimal.
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A graphical user interface program called MLLOphot™ was written to assist in the
reduction of the raw SZ Tau and HD 29103 count data into differential magnitudes. The
data output stream from the photometer contained 5 columns; in order they were exposure
count, universal time, exposure time, a miscellaneous entry, and a filter/object combination
code. The filter/object combination code is used for sorting through the data rows in order
to find the observational results of a specific filter for a particular object. For example, the
UBVRI filters were coded 1 through 5 respectively, while the star object, comparison object,
sky object, and check object were numbered 1 through 4, respectively. Therefore, to find all
of a particular data file entries corresponding to the star counts in “U”, one simply searches
the filter/object column for all entries equal to “11” and then cross-references these indices
to the other data columns. In this way the target star counts, comparison star counts, sky
counts and their times of observation can easily be extracted by computer software from the
large file containing all the night’s data.

MLOphot allows one to interactively fit smoothing splines to the background sky
counts and the comparison star counts for subtraction and division from the target star data.
Only the background sky count is subtracted from the comparison star data. First, a best fit
is visually estimated for the sky counts (Figure 3-4, top panel) by varying the smoothing
factor of the smoothing spline fitting function. A smoothing spline is the best fitting
function to use for these purposes because the variations in background brightness and
atmospheric transparency, although smooth, cannot be expected to be non-pathological™.

We are thus limited to interactively determining the best smoothing factor because an

23 Created using Matlab’s Graphical User Interface Development Environment, called GUIDE.
24 Pathological (in present context): as in not being well represented by any known analytical function.
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automated least squares routine would not work. It is also appropriate to have curvature
between the data points, because this likely mimics the natural variation of the sky more
reasonably than simple straight-line interpolation.

Once a satisfactory curve is fit to the background sky data, MLOphot automatically
computes the interpolated sky counts at the midpoint of the times of the target star and
comparison star exposures, and then subtracts those values from the target star and

comparison star data.
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Figure 3-4: Example of MLOphot

The next step essentially repeats the first, but now the fitting procedure is applied to

the comparison star data. One should note the smooth variations of the background sky
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counts and comparison star counts in Figure 3-4, indicating that this particular night was
clear and stable with perhaps some transparency variation beginning at 8:30 hours UT, as
evidenced by the variation in the comparison star curve as well as the increasing level of
background sky light contributing to the increase in the rates thereof. The comparison star
counts are then interpolated to the times of observation of the target star data using the
smoothing spline fit, and these values along with the target star counts are recorded and used
for the differential photometry.

The raw differential magnitudes are computed using

(3.11)

dm = —2.5logm( Star Count ]

Comparison Count

which converts the counts into un-standardized differential ground-magnitudes, and then
the outside-atmosphere differential magnitudes are computed using the differential
extinction equation of (3.4), where now the differences are between the measured quantities
for SZ Tau and HD 29103. For each night of observations, the first-order extinction
coefficient was calculated using the Bouguer method of plotting the constant-star magnitude
vs. its airmass, and then determining the slope of the line of best fit for the first-order
extinction coefficient. The quality of the observations is evidenced in that the difference
between this set of differential data and published standard data for SZ Tau is a simple zero-
point offset (as seen in section 3.1.3), which is entirely expected for any differential data.
This is wholly inconsequential because the solutions to the Baade-Wesselink and Balona
methods require only differences in magnitude in their solution, which thereby negates the
need for knowledge of the zero-point and the need for full photometric zero-point

standardization. This is clarified in the chapters on the Baade-Wesselink and Balona
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methods. Lastly, the times of observation were all converted to the heliocentric frame using
standard algorithms®, and Appendix B contains the complete listing of the reduced

photometric data.

25 As such found in The Astronomical Almanac; see Appendix A for a Matlab script.
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3.1.2 Procedures in Periodicity, Phasing, and Epoch Determination

With data reduced to differential magnitudes it is possible to determine the
periodicity of the variations, assuming they are uniform. Certainly, periodicity has no
meaning for non-uniform variations and in that case one might be more interested in the
frequency components of the pulsation instead. We begin by finding an estimate for the
period by performing Fourier fits of various orders to the differential magnitude curves vs.
their heliocentric Julian times of observation. Any data reduction package worth its merit
can readily perform these fits instantaneously and visually, as is the case for Matlab. The
data must be treated interactively because it is difficult to determine which order of fit (in
this case a Fourier fit) is the best to use for representing the data. Similar to fitting higher
order polynomials, the higher the order of Fourier fit the greater the number of data points
the fitting curve will pass through, reducing the root-mean-square scatter of data points
about the fit. This cannot be interpreted to mean, however, that higher orders produce
better quality fits — it is quite the contrary. It is up to the researcher to determine the best
order fit through interactive, visual analysis. Fourier fits are especially dangerous as high
orders can produce beats and resonances which are physically completely nonsensical.
Figure 3-5 shows that reasonable Fourier orders give a period of around 3.146 days, and this

can be used as a starting point for a more detailed analysis.
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Fourier Fitting of the Differential Magnitude Curve
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Figure 3-5: Sample of 3 Fourier fits to the U differential light curve.

The data are then phased using

= 3.12
¢ Period Period G.12)

WD goor (ﬂj%
where ¢ is the phase which will vary between 0 and 1, HJD is the Heliocentric Julian Day,

and the period is the initial estimate found above. The data are now Fourier-fitted at various

otders in order to determine the best order. One should choose a fit of high enough order

26 The “floor” function is simply the integer part of its argument. This form of the phase equation temporarily
ignores the epoch starting point.
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so that the low amplitude frequencies are accounted for, but of a low enough order so that
high frequency components are not inadvertently introduced (as can be seen for Fourier

order 6 in the last figure).

Fourier Order 1
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Figure 3-6: Fourier Order 4 seems to be the best choice of order to represent the phased data.

The top panel of Figure 3-6 illustrates how fitting with too few frequency
components in the low order Fourier fit does not adequately represent the data, as there is
noticeable skew between the fitting curve and the data in the region bracketing 0.8 phase. In
the bottom panel, fitting with too many frequency components creates the oddly shaped or
‘out-of-round’ curve observed in the data gap surrounding 0.68 phase, which one has no

physical reason to expect. The periodicity is also not well reproduced in that the curve does
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not return to the same values at 0 and 1 phase. The center panel of Figure 3-6 shows a
satisfactory Fourier fit of order 4, adequately modeling the data as well as propetly
reproducing the periodicity. The fits were not constrained in period in the above analysis; at
this point we are only determining the best Fourier order to use for the representation of the
data. An arguably more quantitative method for determining the correct order for the
Fourier fit is to examine the error on the fit parameters: when the order of the fit is too high,
the higher order coefficients will not be significant as compared to their errors. This method
would lend itself very well to automation inside a computer program.

With an appropriate Fourier order selected, it is possible to determine a much more
accurate period for the stat’s cycle of pulsation. A range of periods of 101 points, spanning
0.05 days and bracketing the initial period estimate of 3.146 days, are used to re-phase the

data and Fourier fits of the chosen order are determined for each. The periods are highly

constrained (to ilOflz) in the Fourier fit in order to force the fit to use each period as its
fundamental frequency. For each of the periods and their Fourier fits, the summed RMS”
of the residuals is recorded and the sequence of these is plotted against their corresponding
period. The trend of the RMS verses period graph will have a minimum at the best fitting
period, and Figure 3-7 shows an example for the U passband. Essentially, the period which
phases the data to the least RMS scatter about the fit is assumed to be the period which best

models the pulsation.

27 RMS is the root-mean-square.
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Figure 3-7: RMS vs. Period. The minimum of the trough in the top panel gives the period of least squares fit.

Data sets which cover a much larger number of epochs (as illustrated in Chapter 1.2)
typically have a much more sharply defined minimum in the RMS vs. period curve than that
found in the top panel of the above figure. This lends credence to the possibility that epoch-
to-epoch variations in period may be quite real and much larger than the variations in
average period over a large number of cycles (see the discussion following the table on page
22). A sharper minimum vertex allows for a smaller bracketing range of the 101 periods, and
therefore, smaller spacing between RMS evaluations and a (presumably) better determined
minimum. Too small a bracketing range, however, will in all cases produce random point-

to-point noise in the RMS vs. period curve of such a magnitude as to render it impossible to
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fit. In any case, the plot of RMS vs. period is typically quite pathological, making it difficult
to fit with an analytic function; polynomials of even 10" order are inadequate. It is
important to propetly fit the curve with a function because one must then use that function
to find its minimum, using some minimization algorithm. Cubic spline interpolating
polynomials have been found to work best, and Matlab can readily create and then minimize
the polynomial structure to any arbitrary precision. The procedure is carried out for each of
the five UBVRI light curves, and the mean and standard deviation of the results are used as
the period and its error. The results for the UBVRI data from MLO are shown below in

Figure 3-8 and tabulated in Table 3-4.
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Figure 3-8: Least-squates period for the UBVRI passbands.
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Filter Period (days) RMS of Fit (mags)
U 3.146145 0.0074
B 3.150372 0.0065
\Y 3.149550 0.0059
R 3.152765 0.0062
1 3.145097 0.0073
Average 3.1488 + 0.0033 -

Table 3-4: UBVRI passband periods.?

The results of the least-squares-period fitting procedure, performed on all passbands
of 5 epochs of variation, shows relatively significant scatter. However, the average period (i.e.,
the period over a large enough number of cycles) for each passband should obviously all be
identical, or else a phase discrepancy would build up between the passbands until each varied
in brightness in completely nonsensical ways - for example U brightening with B dimming.
This would not be expected behaviour for a pulsating star, nor for any other object which
varies isotropically and monotonically with temperature. Therefore, the variation of period
with passband as seen in Figure 3-8 must originate from scatter which is in some way
intrinsic to the data, and so the standard deviation of the periods will be the highest accuracy
we can hope to obtain for that quantity from this particular data set. It is clearly possible
that the different periods are simply due to basic experimental error introduced by the
photometry. But it is not impossible that, on the time scale of one to several pulsations,

there can be real variations in period between passbands, given that different filters peer to

28 The period-finding algorithm does not allow errors of determination to be computed for each passband.
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different depths in the radiative photosphere. In his definitive work on stellar photospheres,
Gray (1992) shows that flux in different filter passbands form at non-commensurate optical
depths, such that bluer light generally forms in regions of higher temperature deeper in the
photosphere, compared to redder light which forms higher in the photosphere where it is
cooler. Because the surface gravity of a Cepheid supergiant star is quite low, the range in
optical depth of the formation of the continuum corresponds to a significant range in
geometric depth as well. Only loose coupling between the photospheric layers can be
expected given that they are relatively rarified and geometrically quite deep. There is at least
a possibility, then, of epochal variations in reaction time and behaviour of each passband
layer to the driving pulsations coming from the ionization pumping region below. This is an
issue clearly worthy of further study both observationally and theoretically, and would be a
unique extension to the study of Cepheids for stellar astrophysics.

The mean and standard deviation of the data plotted in Figure 3-8 give the resulting

period estimate and its error,
P = 3.1488 + 0.0033d, (3.13)

and it is this value that will subsequently be used for the remainder of this study. The error
of 0.0033 days on the period estimate is 4745".

It is common practice to phase the light curve data of pulsating stars such that the
time of maximum brightness corresponds to zero phase. This requires the determination of
an epoch for the light curve and introduces a modification to equation (3.12); it now takes

the form

o=

HJD —epoch _
( epoch) _ floor[mj. (3.14)

Period Period
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The V passband is chosen for the determination of the epoch. In published
literature normally only one epoch is specified and it is usually from the V passband,
although we will see in this work that the epoch actually differs for different filter passbands.
Most authors do not cite in which passband their epoch was determined. The data are re-
phased using the period found above (3.13) and a Fourier fit of appropriate order (in this
case, 4) is determined. The minimum of this Fourier fit (i.e. the maximum brightness) and
its corresponding phase can be found to an arbitrary degree of accuracy using numerical
search techniques, and the subsequent Julian Date is determined through comparison of this
phase to that of a phase with a known Julian Date from the data. The epoch is thus

determined as

epoch = (4., —%,) P+ HID, (3.15)

where @

win 1S the phase of the Fourier-fit minimum (i.e., maximum magnitude), and ¢, and
HJD, are a matching phase and heliocentric Julian Date from any point in the real data
respectively, and P is the period. The returned value plus or minus multiples of the period
can be used as the epoch, but it should be specified within or very near the dates of the

observations in order to avoid the error propagated by the period. The result for the V

passband near the end of the observation run was thus
epoch, = HJID 2,453,316.5166 =+ 0. (3.16)
The error limits on the epoch were determined by re-phasing the data at the limits of the

error on the period, re-fitting new Fourier curves with the new phases, and determining the

difference of the new epochs from that of using the mean period.
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This procedure was done for the other 4 filters, and their differences from the V
epoch are shown in Figure 3-9 and listed in Table 3-5. The differences are well above the
error in the determination of the period and the epoch, and varies little upon variation of the
fitting routines as described above. This epoch lagging” of the passbands is a2 phenomenon
not well discussed in any of the literature. Berdnikov & Pastukhova (1995) report on 11
Cepheids for which they performed O-C analyses, and in table 3 of their work they list
“phase correction(s) to the standard light curve in the B band to make it coincident with the
standard light curve in the V band...”. Out of the more than 120 references in this thesis,
their statement appears to be the most any author has had to say on the subject of epoch
lagging between passbands. It implies that the data are supposed to be re-phased with the
added correction, and that this is even a standard procedure. It would be a rather ad-hoc
change to make to the data and is demonstrably an incorrect thing to do on several counts:
First, there is the obvious objection of introducing such a change to the data without giving
clear justification or reasoning - none is given. Second, following the previous discussion on
photospheric passband stratification and that the driving pulsation occurs well below the
photosphere, it is quite likely that the different passband layers mechanically react through a
sequence of times as the pulsation passes through one layer to the next - there is no clear
reason to expect that all layers will react simultaneously. And third, aside from any insight
into the internal astrophysics of stellar photospheres, there is the very simple fact that the
total brightness of a star is the product of its surface brightness and surface area. Because

the surface brightness variations obviously have different amplitudes in different passbands,

2 Epoch lagging in the sense used here, and phase lagging, are terms usually used interchangeably. However, it
is more accurate to call this phenomenon epoch lagging only, as phase lagging should imply changes in period
which then give rise to differences in phase.
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whether or not they originate from geometrically different layers, they will combine uniquely
with the stellar surface area variation to produce curves which all maximize at unique times.
If one considers that the effective surface area of the star may also be unique for each
passband given photospheric stratification, the case is made more clearly. SZ Tau’s nearly
sinusoidal variation in light lends a simple starting point for modeling such pulsations, and

this will be discussed in Chapter 5.
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Figure 3-9: UBVRI passband epochs. There is a significant amount of epoch lag between filter passbands.



Passband Epoch Difference from V
U 2,453,316.4423 + 00 -0.0743
B 2,453,316.4323 + o050 -0.0843
\Y 2,453,316.5166 + o0 0
R 2,453,316.5637 + Jooo 0.0471
I 2,453,316.5912 F 520 0.0746

0.0015

Table 3-5: The UBVRI epochs with all passbands phased to the same period.

62



63

3.1.3 Fourier Representations for the Light and Colour Index Curves

& Comparison to Published Data

With the period and epoch of the stellar variations determined and a Fourier order
selected which best represents the data, we can create Fourier functions for the differential
light curves and then use those to create the colour index curves. Fourier functions will also
be used for representing the radial velocity data, and these will all subsequently be used in
the Baade-Wesselink and Balona analyses. Using such curves greatly simplifies the analysis
because data values can then be calculated at any arbitrary and corresponding phase points in
the light, colour, and radial velocity data. And it can be reasonably argued that this will
produce the same results as if the individual data points were (somehow) used in their
original form, because minimization of scattered data points should give the same result as
minimization of a curve which is the average of the original data points. The UBVRI

differential magnitude curves and their Fourier fits are shown in Figure 3-10.



SZ Tau UBVRI Differential Light Curves, MLO Nov 2004

Differential Magnitudes

| | | | |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Phase (4)
Period = 3.1488 + 0.0033 days, EDOEhV =HJD 2 453 316.5166

Figure 3-10: SZ Tau UBVRI light curves.
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A table of 4™ order Fourier coefficients and their ninety-five percent confidence

intervals are presented in Table 3-6. The Fourier polynomial takes the form

dM (@) = a, + a, cos(we) + b, sin(we) + a, cos(2ae) + b, Sin(2op)
+a, cos(3we) + b, sin(3we) + a, cos(4wp) +b, sin(4wp)

(3.17)

where the angular frequency o is set to exactly 2n because the data has already been phased

by the average period, and ¢ is the phase.
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Coefficient dU dB dVv dR dI
a, 0.0721 -0.4042 -0.7231 -0.9021 -1.1171
1 0.0028 1 0.0025 + 0.0023 + 0.0025 + 0.0030
a, -0.3108 -0.2545 -0.1704 -0.1347 -0.1051
* 0.0024 * 0.0021 + 0.0020 * 0.0020 * 0.0024
b, 0.0446 0.0266 0.0067 -0.0006 -0.0073
+ 0.0037 1 0.0033 + 0.0031 1 0.0033 + 0.0038
a, 0.0093 0.0001 -0.0002 0.0006 0.0011
+ 0.0023 + 0.0020 * 0.0019 + 0.0019 * 0.0023
b, 0.0063 0.0098 0.0080 0.0061 0.0063
* 0.0032 + 0.0020 + 0.0019 + 0.0019 * 0.0023
a, -0.0032 0.0024 0.0025 0.0011 0.0012
1 0.0016 1 0.0028 + 0.0026 1 0.0028 + 0.0032
b, -0.0081 -0.0051 -0.0039 -0.0043 -0.0024
+ 0.0007 + 0.0014 1 0.0013 1 0.0014 1 0.0016
a, 0.0038 0.0042 0.0031 0.0012 0.0014
+ 0.0020 + 0.0017 + 0.0016 + 0.0017 + 0.0020
b, 0.0006 -0.0009 -0.0028 -0.0023 -0.0025
1 0.0021 1 0.0018 + 0.0017 1 0.0018 1 0.0021

Table 3-6: Coefficients for the Fourth Order UBVRI Fourier Curves.

Colour index curves can be created through the simple subtraction of these
coefficients from one passband to the other. The usual U-B, B-V, V-R and R-I colour
indexes are plotted in Figure 3-11. These colour indexes are not fully standardized as they
were formed via subtraction of differential light curves, so though they are on the correct
magnitude scale they do not have the correct zero point. Again, this is not a problem
because both the Balona and Baade-Wesselink methods require knowledge of only the
positions (i.e., phases) of equal colour index magnitudes and so differential photometry and

colour indices are sufficient.
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SZ Tau Colour Indicies, MLO Nov 2004
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Figure 3-11: Differential colour index curves from subtraction of the Fourier-fitted light curves.

In Figure 3-12 the U-B, V-R, and R-I colour index curves have been scaled to the B-
V curve through linear least squares. In comparison to the scatter about the Fourier fits of
the original differential magnitude data, the dispersion of the mean colour index curve is
quite satisfactory. An obvious correlation is found in that the dispersion in phase regions
where the data are dense is the most accurate, while the scaling is more error prone in the
phase gaps lacking coverage. Table 3-7 lists the Fourier polynomial coefficients for the

mean colour index curve and its dispersion.
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Mean Differential Colour Curve
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Figure 3-12: Mean colour index curve. The colour index curves scale very well to each other. Regions of poor
coverage at 0.5 and 0.8 phase have expectedly larger error.
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Coefficient | Mean Colour | Error Curve
a, 0.3189 0.0066
a, -0.0828 -0.0005
b, 0.0204 -0.0041
a, 0.0025 -0.0009
b, 0.0002 0.0006
a, -0.0012 0.0015
b, -0.0024 0.0010
a, 0.0011 0.0006
b, 0.0009 -0.0020
a5 -0.0028
b, 0.0007
a -0.0001
by 0.0006
a, 0.0003
b, 0.0003
ag 0.0004
by 0.0001

Table 3-7: The mean colour index curve for SZ Tauri.?

30 . The mean colour index curve is exactly represented by a 4% order Fourier polynomial. The dispersion
function requires an 8’th order fit to adequately represent it.
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Both Figure 3-11 and Figure 3-12 show that the colour index maximizes before the

light. The epoch for the mean colour index is

= HJID 2,453,316.3932 + ~29%° (3.18)

epOCh 0.0037 >

MeanColour
0.1234 days or 0.0392 phase before the V passband, which is actually earlier than any of the
passbands. This connects to the previous discussions on passband epoch lagging in a very
relevant way. That the passbands have generally the same profile in their variation in light
but lag each other by some small amount, it automatically requires that the colour index
between them will maximize at a different time than either of them, either before or after
depending on the direction of the subtraction. If generally B-V is reflective of effective
temperature and through it the effective surface brightness, one must indeed expect the
colour index to maximize at a time earlier than the light because the surface area maximizes
after the light. Epoch lagging is then an expected and fundamental prerequisite, but see
Chapter 5 for a complete discussion.

Moftett & Barnes (1980) have good standardized Johnson BVRI data of SZ Tau
taken between April 1977 and December 1979. The two corresponding passbands to the
MLO data (i.e. B & V) show an extremely good match, aside from linear offsets to shift the
differential MLLO data to the standard system. The comparisons are shown in the next three
figures below. Barnes et. al. (1997) have further BVRIJHK photometry of SZ Tau from
later epochs, but these data turn out to suffer from an error in the determination of the

epoch, so that the data are shifted by approximately 0.1 phase. This is due to a large gap in

31 The error on the epoch of the mean colour index was determined by re-phasing all data to the limits of the
error in the period (epoched using the corresponding V epoch), forming new mean colour index curves at
those limits, and then finding the minimum of the curves. In both cases, the epoch of the mean colour index
moves slightly earlier in phase.
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their photometry of 0.2 phase in width at the maximum of the light curves, which led to a
poor determination of the time of maximum light - the problem is not noticed in their paper

however. When shifted in phase it matches with what is shown below.

Moffett & Barnes and Fostma Johnson B
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Figure 3-13: Moffett & Barnes vs. Postma Johnson B light curve.
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Figure 3-14: Moffett & Barnes vs. Postma Johnson V light curve.
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Figure 3-15: Moffett & Barnes vs. Postma Johnson B-V light curve. The colour excess has not been applied.
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Gray (1992) gives a polynomial to convert from B-V magnitude to effective

temperature

log(T,,, ) =3.988—0.881(B -V, +2.142((B-V),)* —3.614(B -V),)* +

(3.19)
3.2637((B-V),)* —1.4727((B-V),)° +0.26((B-V),)°

Applying Turner’s (1992) careful determination of Eg, = 0.29 for the colour excess,

equation (3.19) results in the temperature curve in Figure 3-16 below, and gives a mean

L
effective temperature of 6021 K. SZ Tau’s average luminosity™ of log—— = 3.33 classifies

Sun
it as a class Ib supergiant, and so its spectral type varies between about F6 at the hottest to
F9 at the coolest, averaging F7.5. Sanewal & Rautela (1989) report a temperature variation
which is offset several hundred degrees higher than that reported here, based on comparison
of their data to the model atmospheres given by Kurucz (1979). However, they used a

colour excess of Ej, = 0.31 and so this accounts for most of the difference.

32 Calculated using the average Balona radius determined later in this work, and the mean of the temperature
curve in Figure 3-16. L. = 470T'R.
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Figure 3-16: Effective temperature curve for SZ Tau.
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3.2 Spectroscopic Reduction and Radial Velocities

3.2.1 Spectra from the Dominion Astrophysical Observatory

Moderate resolution spectroscopy was obtained for SZ Tauri during a two-week
observing run at the DAO™ from October 02 through October 15, 2003. The Plaskett™ 727
(1.85m) f/18 Cassegrain mounted spectrograph was used with a SITe-2” CCD detector.
The SITe-2 is a thinned, UV coated 532x1752 15 micron pixel CCD chip. It has a readout
noise of approximately 12 ¢ /pixel, a gain of 1 ¢ /ADU, and a quantum efficiency (QE) of
35% at 4000A. The spectrograph was used in configuration 21121B, referring to use of the
21” focal length camera and a 1200 L/mm grating used in the first order with a peak blaze
efficiency on the blue side of the visible spectrum. The reciprocal linear dispersion is
nominally 15 A/mm. No image slicer was used at the spectrograph entrance slit, which was
set to 9 thousands of an inch or 1.4 arc-seconds on the sky.

Only ten data points were obtained for this star during the observing run because
inclement weather ruined many nights of observation. The data were distributed at only
three points in phase occurring at ¢ = 0.2, 0.65 and 0.85. Therefore, for the purposes of this

study, archival radial velocity data have been used. The reduction procedures for the spectra

3 Dominion Astrophysical Observatory, Victoria, B.C.

34 Named after John S. Plaskett, founder of the Victoria location DAO, 1913.

3 SITe is a CCD manufacturing company, a descendent company from Tektronix
36 ADU: analogue to digital unit
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and the extraction of the radial velocities will still be discussed presently, however. The ten
points that were obtained fit well with the older published data (see Chapter 3.2.3). A
graphical user interface (GUI) software program written by the author called CCDRED”
was used to reduce the CCD data; it can reduce both spectroscopic and photometric image
data.

The first step in reducing a CCD image is to create a master “bias” frame™ for
subtraction from all images. A bias is a zero second” exposure for calibrating the chip’s
electrical charge offset which the CCD acquires as it initializes for an exposure. The offset
presents a zero-point background, typically 1/60" the dynamic range of the chip, and which
must be subtracted from each real data frame. In high quality and especially modern CCDs
the bias is usually quite uniform across the field, and in this case one can use the global mean
or median value of the entire bias matrix for subtraction from the image data frames. This
should increase the signal to noise ratio (SNR) in the final image because it avoids
introducing the read noise from the bias image into the reduced one - subtracting the entire
bias frame from the image frame would increase the noise level in the reduced image
through quadrature addition of the read noises from the two frames. If the temperature is
stable, and failing any hardware troubles, the global median of the bias will remain constant.

Older CCD chips usually suffer from broad scale non-uniformity in the bias
structure. This necessitates the collection of around a dozen, or even several dozens, of bias

frames every night of observation. The bias level and its structure are quite sensitive to

37 See footnote 23.
3 The terms “frame”, “image”, “matrix” and “data” are used interchangeably.
% Commonly, CCD control software allows one to enter zero as an exposure time, but the hardware actually

uses the fastest “blink” time that it can, which is of order 10ms. The shutter is closed for the exposure.
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temperature variations, so that even through the course of a night of observations the bias
level can vary significantly if the CCD chip is not propetly cooled and insulated. In some
cases, taking samples of bias throughout the night is warranted, depending on the nightly
temperature fluctuations and the cooling method of the CCD hardware. Standard
thermoelectric Peltier coolers cool only relative to the ambient temperature of the
surrounding air, and they do not cool efficiently much further than 35 Celsius below
ambient. At this relatively high temperature the bias (and the dark current...see following) is
extremely sensitive to thermal variations. Cryogenic cooling with liquid nitrogen (LN,) is far
superior, if the telescope and its corresponding hardware configuration allow it. LN, will
hold the chip at a constant temperature independent of external thermal variations, and this
temperature is so low that the bias level can be kept fully constant (and the dark current
close to zero). Nitrogen exists naturally in its liquid state near -180" C, so usually a small
heating element is placed against or near the CCD chip to raise it to a temperature of around
-125° C, in order to ensure optimal quantum efficiency of the photoelectric material.

Figure 3-17 below shows the bias structure of the SITe-2 CCD from the DAO. The
uniform strip on the right side of the image is the overscan area, which does not represent
any real portion of the CCD chip. It is the result of the analogue to digital unit converter
(ADC) reading off imaginary pixels at dimensions larger than the actual chip, and it can be
used for comparison to the bias level of the CCD". In high quality CCD’s the difference
between the overscan area and the bias will be zero, indicating proper functioning and low

noise of the chip. In addition to the obvious difference of the bias level from the overscan

40 Not all CCD chip hardware is capable of this functionality.
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as seen in Figure 3-17, there is also a broad scale variation in intensity across the field. The
pixel-to-pixel granulation is the random noise from the readout of the chip (i.e., the read
noise), and was found to have a value of about 5 counts or 0.2% of the mean. The larger
scale, left-to-right gradient variation is about 15 counts or 0.6%. The image is expanded in
the vertical direction, and also note that the vertical direction has only 140 pixel rows; this is

due to on-chip binning of the pixel columns by a factor of 4.
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Figure 3-17: A significant large scale variation is seen in this bias.

Because the large scale variation is constant in time (at constant temperature), one
can improve the signal to noise ratio in the reduced image by using a smoothed 2
dimensional fit to the bias surface for subtraction from real image data. Subtraction of the

raw median bias from an image will incorporate that bias’ random read noise into the frame,
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because the image data already contain their own random read noise and so the two noise
contributions would add in the usual way. Subtraction of a smooth surface function is the
equivalent of using the global median from a structure-less bias, and so introduces no
additional read noise into the reduced image. If the bias structure proves too unwieldy for

fitting, the raw bias frame must be used admitting a small loss in the signal to noise ratio.
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Figure 3-18: A two-dimensional surface fit can be used to model the large scale bias variation when such a
variation is smooth and continuous. The overscan has been clipped from the data matrix.

Figure 3-18 shows a two-dimensional surface fit and its residuals to the median bias
frame from the DAO. The residuals plot in the bottom frame show a purely uniform,

random variation. The standard deviation of the residuals of 2.4 counts would be the level
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of random noise introduced into each pixel of the data frame if the median bias was
subtracted instead of the surface fit.

Another background offset which must be subtracted from the data is the “dark
current”, sometimes called “thermal” frames, indicative of their sensitivity to temperature.
At most temperatures the photoconductive material of the CCD will spontaneously emit
thermal electrons into the CCD pixels, and this presents a further zero-point offset in the
background. Cryogenic cooling can keep the rate of thermal emission down to a mere one
or two counts per hour of continuous exposure. Thermoelectric Peltier cooling, which is
much warmer than LN, can see dark currents of one hundred counts per minute or more.
Because the cooling was of the former type at the DAO, dark frames were not taken during
this observing run. However, the reduction procedure for the dark frames follows
essentially that of the bias frames. Each set (of say 11 images) of dark frames must be taken
with the shutter for the CCD camera closed and for the same exposure time(s) as the image
data, and most importantly also at the same temperature. It is theoretically possible to take
only one set of dark images at a long exposure time, and then simply scale the dark data by
the ratio of image exposure time to dark exposure time. However, the author has observed
that the thermal level does not always scale linearly with exposure time, and recommends to
take sets of dark frames at each exposure time of the data images. If the bias and darks are
being processed separately (see discussion in next paragraph), then the bias must be
subtracted from the dark before the dark is subtracted from the image because each data
frame, no matter its purpose or how it was taken, contains the bias.

It is a matter of contention whether or not it is necessary to perform the bias

subtraction distinctly from the dark and image data at all, because a dark image is simply
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D)) = D,p(y) + B(xy), where B(xy) is the bias. Because the bias level and its
variations exist in every single frame and so are already represented within the dark and
science-image data, it should be sufficient to subtract the dark frame only from the science-
image. This would avoid multiple introductions of the read noise into the processed data. If
the dark frames can also be modeled with a smooth surface fit, then the only random read
noise in the reduced data will be that already inherent to the science-image.

The full subtractive offset corrections to an image I(x,y) are thus
|t corectea (% ¥) = (1 (% Y) = B(X, ¥)) = (Dyage (X, Y) = B(X, ¥)) . (3.20)
Quadrature addition of noise is then
812 et comestea (%0 Y) = 1% (X, ¥) +26B% (X, ¥) + D% o (X, ). (3.21)
However, equation (3.20) quite simply reduces to

Ioffset corrected (X’ y) = Iraw (X1 y) - Dimage (X, Y) (322)

and the noise is then

5' 2of'fset corrected (X, y) = 5' 2raw(X7 y) + §D2image (X’ y) (323)

but only if the bias has #of been subtracted separately from the raw dark and raw image data.
If the dark frame has been modeled with a smooth function, then its contribution in (3.23) is
zero. If no dark frames were taken because LN, cooling was used and exposure times short,
the bias must then still be subtracted. For our session at the DAO, we assumed that the

dark current was negligible and so used the bias only for background offset correction®'.

#'The author admits this is a very convenient assumption: batches of bias frames are much faster to record,
and this affects mental reasoning at 6 o’clock in the morning.
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The final correction which must be applied to the data images involves what is called
a “flat field”. It is an image which records the sensitivity modulations of the optical train of
the telescope and detector. The need for this is two-fold: first, every individual pixel on the
CCD chip does not have the exact same quantum efficiency (QE) as the others; second, dust
and “smudges” on the telescopic optics can modulate the intensity of light falling across the
CCD imaging field. The latter problem is significant mainly for photometric imaging; in
spectroscopy, any information regarding telescopic dust and smudging on the optics is
integrated at the focus of the spectrograph entrance slit, and this makes the formation of the
flat field image much more simple. One merely shines a polychromatic source from a
propetly selected, spectrum-less incandescent light bulb onto the entrance slit and then
images the continuous spectrum. Flat fielding in photometry is usually more complex,
requiring imaging of the twilight sky or the imaging of a large white screen attached to the
inside of the telescope dome, evenly illuminated with a polychromatic light source. These
are usually called “sky flats”, and “dome flats”, respectively. In both cases a major difficulty
is found in attaining a truly uniform illumination across the imaging field. Twilight sky can
have gradients across the image with distance from the sun, moon, or horizon, while dome
flats are simply difficult to uniformly illuminate. In all cases, flat field images should be
exposed to approximately 50% of the dynamic range of the sensor in order to ensure a high
signal to noise ratio without approaching the saturation level of the CCD chip.

The flat field correction is not by subtraction, but by division. Given a uniform
source the field sensitivity modulations will produce different count rates in different areas
of the chip, even though all the rates should have been equal. The read noise in a flat field is

negligible compared to its signal, so that the pixel-to-pixel variations are actually due to the
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quantum efficiency variations of the pixels; these must be corrected from the image and
therefore a smooth function should not be fit through the flat field.

Let the image source function, i.e. the function that describes the spatial field
distribution of the light just before it enters the telescope®, be defined as S(xy). Let the
detector response function which modulates the light according to the sensitivity variations
inherent to the optical train and detector be R(x5). An image I(x,y) can then be expressed®

I (X’ y) = S(X, y) ’ R(X’ y) (324)

In practice we record I(x,y) but we want S(x,y), so we must therefore divide out R(x,y).
A flat field image can then be expressed via the above equations as
F(xy)=f(xy)-R(xY),
where f{x,y) is the flat field illumination source. However, fx,y) is a uniform illumination
source so that f{x,y) = f,, and thus the flat field image is
F(x,y)=f,-R(X,y). (3.25)
If equation (3.25) is normalized" by dividing by its mean (or possibly median) value we have

R(x,y) (3.26)
R(x,y)/N’ '

l:n (X, y) = Z

v(x,y)

where N is the number of pixel elements. Dividing (3.24) by (3.26) then leaves

42 This would be the case for photometry. For spectroscopy, it is the distribution in light just after leaving the
grating,

# Assuming the background offsets have already been applied.

# “Normalizing” means to force a value or average of values to be equal to 1.
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I (X! y) _ S(X, y) ) R(X, y) .
RO ik, y)/( S R(x, y)/Nj
v(x.y)

(3.27)

Because R(x,y) appears in both the numerator and denominator on the right side of (3.27) its
modulating effects are cancelled out, leaving only the original source S(x,y). And because the
denominator as a whole has been normalized, the total flux on the right hand side is
preserved. The uniformity of the flat field fx,y) = f, is clearly paramount in order to be able
to properly correct for the sensitivity variations of R(x,y) across the field of the CCD chip.
In practice, the flat field image is reduced by offset correcting through equation (3.20) or
(3.22) and then dividing by its mean (or median) as in (3.20)

Figure 3-19 shows a median flat field from a batch of 11 images from the DAO.
The granulation in the plots are due to the random variations of pixel-to-pixel quantum
efficiencies. The dispersion axis of the spectrograph is in the horizontal direction of the
image. Because CCD quantum efficiency varies with wavelength the broad horizontal
variation in the flat field is expected, particularly because such a large range in wavelength
(400A) was imaged. The vertical variation was not expected, but could be due to improper
alignment or illumination of the spectrograph entrance slit by the flat field source. The
vertical artifact visible at the last quarter of the top image is due to an unresponsive or ‘dead’

pixel column.
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Flat Field Image Face-On View
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Figure 3-19: Median of eleven flat field images. The field has been normalized.

We can now fully express a raw image as
1%, y) =S(x ¥)-R(X,y)+D(x, y) +B(x,y) (3.28)
where S(x,y) is a real image from the sky” and R(x,)) is as above, D(x,)) is the dark current

and B(x,y) the bias offset. Solving simply for the science data S(x;)) one has for the reduced

data

I (X! y) - D(X, y) - B(X1 y)
R(x,y)

S(x,y)= (3.29)

The numerator is offset-corrected according to the principles discussed before equation

(3.20) and the denominator is the offset-corrected normalized flat field from equation (3.20).

4 Or grating.
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Figure 3-20 shows an image of the raw spectrum of SZ Tau. The image has been
clipped to the same dimensions as that of the surface fitted bias and the flat frame, and those
corrections have been applied to it in kind. Note that the region of the chip where the
spectrum falls is in a very narrow horizontal band; this is the star light dispersed from the
grating and its height is due to the seeing disk of the star projected through the spectrograph

optics and onto the chip. The speckles are due to cosmic ray events and spurious hot pixels.

Figure 3-20: Pre-reduced CCD image of the spectrum of SZ Tau.

Obviously, the regions in the image above and below the spectrum where no useable
data are found must be clipped from the data matrix. In spectroscopy mode CCDRED
accomplishes this by overlay-plotting all of the pixel columns from the image onto the same

axis, as seen in Figure 3-21. The user then identifies the relevant portion of the data with the
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mouse. An alternative automated routine could be developed which identifies all data rows™*

above a user defined SNR, but this simple method has not yet been implemented.
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Figure 3-21: The pixel columns from Figure 3-20 are plotted one over the other in this column overlay plot.
The spike at row 100 is due to a hot pixel or cosmic ray event, and is extraneous to the spectral data. The
“fuzzy” wings are due to the low SNR of the flat field in that area.

If the data regions with no signal are relatively uniform in both intensity and noise
level (which would be difficult to argue for Figure 3-21), the average level could perhaps be
employed as a background estimate for the combined effects of sky and internally scattered
light in the spectrograph, and that value could be subtracted from the data as well. This

would be important when precisely measuring spectral line depths or integrated absorption.

4 “Rows” in the sense of Figure 3-20.
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In Figure 3-22 the extraneous data regions have been clipped from the image, leaving
only the spectrum. The spectral data lying in the rows at the extremities of the pixel row
plot (top panel) correspond to the spectral profiles of low intensity in the pixel column plot
(bottom panel), and vice-versa. One ultimately wishes to reduce the two dimensional image
into a one-dimensional spectrum, so the eight rows of spectral data which are left after
clipping should be averaged together to form the single line spectrum. However, it is clear
that each row of data has a different average signal to noise ratio. Therefore, if each spectral
row is weighted by its average SNR, their weighted mean will give an optimized result for the

single line spectral profile.
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Figure 3-22: Eight rows of data are left after clipping the extraneous portions from the plot in Figure 3-21.
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Looking closely at the bottom panel in Figure 3-22 it is apparent that not every row
of spectral data mimics the other’s large scale variations, i.e., those variations occurring over
a much larger scale than the average scale of variation due to spectral absorption features.
The cause of these variations are most likely due to the un-evenly illuminated flat field image
as noted above. Because in general it is not known which spectral row will best reflect the
actual large scale variation due to the stellar flux profile, it can be assumed that the one with
the highest average SNR does. Low order polynomials can then be fitted through each
spectral row, and their ratios to the fit through the highest SNR row can be used to de-skew
the coarse variations. After each row is de-skewed and weighted the average spectral profile

is computed, and this is shown in Figure 3-23.
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Figure 3-23: Fully reduced spectral profile for SZ Tau. The spectrum has been normalized to continuum
points and has been divided between the upper and lower panels.
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CCDRED can be used to normalize a spectral profile through either manual user
input or an automated routine. In manual normalization the user selects continuum points
by lining up the vertical mouse cross-hair in the horizontal position of the continuum point,
and then pressing the left mouse button. Once at least two points are selected, a cubic spline
is fitted through the selection points so that the user can visually determine whether or not
the spline satisfactorily imitates the general trend of the continuum emission. If an
erroneous point is selected which causes the spline to deviate too wildly from a smooth
trend, the right mouse button can be clicked which will deselect the last point. In this mode
the user also has the option to overlay a sequence of fully reduced spectra and ensure that
each spectra is normalized to the exact same continuum points, granted that there be little
Doppler shifting between individual spectra within the sequence. The automated routine, on
the other hand, divides the spectrum into a (still user specified) number of bins, and then
selects the second or third highest maximum value"’ within each bin as the continuum point
for the bin. Again, a cubic spline is used to fit the points. The automated routine will not
ensure that the same continuum points are used for each bin, and it can also have difficulty
when there are very wide absorption features such that the bin width is too small to contain
a continuum point, as can easily happen in the calcium H and K absorption line region seen
in Figure 3-23. Spectra with wider spacing (and hence more continua) between lines are
normalized quite well with the automated routine, and it also takes less time to perform. In
cither case, after the cubic spline is formed, the spectrum is divided by it and this normalizes

the points in the continua to unity. And if necessary, the process can be iterated.

47 The second or third highest value is used instead of the maximum value, since the maximum point will in
general be due to a noise fluctuation.
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The spectral dispersion can in principle be determined through measurements of the
pixel positions of the stellar absorption features in Figure 3-23. However, comparison lamps
were taken for calibration of the radial velocity measurements and so these have been used
instead. Iron-Argon (FeAr) emission lamps were taken in pairs bracketing each stellar
exposure in order to calibrate the spectrograph flexure as the telescope tracked an object
across the sky (this will be discussed in the next section). Figure 3-24 shows the emission
profile of the FeAr emission lamp after reduction by CCDRED, and Figure 3-25 shows the

spectral dispersion.
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Figure 3-24: Fe-Ar spectrum. The spectral dispersion can be calibrated though measurements of the Fe-Ar
emission lines. Line identifications are in Angstroms.
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Spectral Dispersion Calibration
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Figure 3-25: Quadratic fit through the pixel positions of fourteen identified emission lines.

The equation in the top panel of Figure 3-25 gives the distribution of wavelength
with pixel column position across the chip; the spectral dispersion (in A/ pixel) is the rate of
change of this equation. Although the coefficient of the second order term is quite small,
including the term amounts to an angstrom of difference between the edges of the chip as
compared to using only the linear terms. The mean spectral dispersion - the spectral
dispersion at the centre of the chip - with the difference of the spectral dispersion at the
extremities of the chip as its deviation is then

D =0.23913 + 0.00092 A/ pixel = 17.502 + 0.067 km/ s/ pixel. (3.30)*

Because the pulsational radial velocity variation of SZ Tau is known to have an

amplitude in the range of 20 km/s, a maximum Doppler shift just under 1 pixel (or 0.24 A)

4 Wavelength can be converted to velocity through equation (3.31) for Doppler shift, discussed in the next
section.
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is expected. Therefore, a given spectral line's sampling dispersion will have a maximum
variation on the order of 1x106 A or 7 ecm/s, an altogether negligible concern. This will
allow the use of very simple cross-correlation techniques in determining the spectral
Doppler shifts. Also, if it can be assumed that cross correlation techniques can register
Doppler variations on the order of a tenth of a pixel, then an accuracy of 1km/s can be

expected in the determination of the radial velocities.



93

3.2.2 Procedures in Radial Velocity Variability Detection and

Analysis

Radial velocities are measured via the Doppler variation of spectral lines, which
manifest themselves through positional changes in the location of spectral absorption
features on the CCD image. Doppler shifts arise when an object emitting (or reflecting)
light is not in a radially stationary position relative to the observer measuring the light. This
occurs via any of several processes, including the binary orbit of two stellar companions,
pulsation of the photospheric layer of a stellar surface, or the recessional velocity of distant
galaxies, among many others. In the last case the Doppler shift is more or less constant,
whereas for the former two the shift is of a variational nature. In the case of variable stars it
is due to the periodic radial expansion and contraction of the photosphere.

If the spectral dispersion of the data is known (as discussed in Chapter 3.2.1), then

the wavelength Doppler shift A4 is related to the velocity » of the source by
a2V (3.31)
C

where A is the rest wavelength of the spectral line and ¢ is the speed of light in vacuum.

The first spectral Doppler shifts were measured through line-positioning techniques
on photographic plates. In this case a binocular microscope (or perhaps even by eye and
ruler) would be used to measure the centroid of a spectral line on the plate, and a sequence
of these measurements on a batch of spectral data would yield the relative variational

Doppler shifts. The positions of identified spectral features could then be compared to
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those from a test source situated in the laboratory, allowing absolute calibration of the radial
velocities with respect to the observer. Measurement of the positional shifts of multiple
lines on each plate would allow for the formation of a mean value and an associated error of
measurement through its standard deviation. Now automated, techniques such as this are
used fruitfully in the digital era. Other methods have become widespread with the advent of
high-speed computing, such as the cross-correlational method which is used and discussed
presently.

For discreet functions, such as those pertaining to digital spectra of an integer

number of elements, the cross-correlation can be expressed as

N—-m-
X(m): n=0
X"(-m) m<o0

1

Xn+m y: m 2 0
: (3.32)

where * indicates the complex conjugate (but because both <’ and ‘y’ are real the complex
conjugates can be ignored). Equation (3.32) does not lend itself well to interpretation.
However, cross-correlation is also called the sliding dot-product, and this is because the
functional effect is to “slide” the sequence x over the sequence y in integer steps, where the
dot-product of corresponding elements (i.e. elements that lie on top of one another) is the
value for the correlation at that particular lag. The “lag” refers to the difference of the
positions of elements within the first sequence relative to the corresponding elements in the
second sequence. For example, at zero lag the elemental indices of both sequences are
aligned, and the full dot-product of the two sequences then gives the correlational value. At
lag = 1, element 2 in the 1" sequence corresponds with element 1 in the 2™ sequence,

element 3 in the 1% to element 2 in the 2™, and so on. In the first case, element 1 in the first
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sequence and element N (where N is the length of the sequences, assumed equal) in the
second do not contribute to the dot-product because they have no corresponding elements
in the other sequence. The correlation lags then extend to £ (N-1) on either side of zero, so
that the correlation sequence contains 2(N-1)+1 = 2N-1 elements®.

Figure 3-26 shows the cross-correlation between two FeAr (iron-argon) emission
spectra taken approximately 3.5 hours apart. Before the cross-correlation was performed
each spectrum was subtracted by its mean value, and was also multiplied by a cosine-bell
apodizing function in order to suppress sinc function ringing in the correlation peak wings.
Near zero lag, where the corresponding emission lines from each spectrum line-up with one
another, an absolute maximum in the cross-correlation occurs. The secondary maxima in
the top panel of the figure are due to the correlation of unrelated emission lines as one
spectrum is slid over the other. The 41 lags surrounding the maximum lend themselves well
to fitting with a Gaussian function, as displayed in the bottom panel of Figure 3-26, and this
can be used to determine if there was any spectral shifting between the two spectra. If there
was zero shift between the two spectra, or if a spectrum was correlated to itself’, the
maximum of the correlation sequence would occur at exactly zero lag. A shift in the line
positions between the two spectra will reflect itself in a shift of the correlation maximum, i.e.

the center of the Gaussian, from zero lag.

4 The addition of 1 is for the value of the correlation at lag = 0.
50 Self-correlation is commonly referred to as auto-correlation.
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_ross Correlation for Two Fe-Ar Lamps
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Figure 3-26: Correlation sequence of two Fe-Ar reference spectra. The top panel shows the correlation
sequence over the entire range of the data, while the bottom panel is centered on the maximum peak and has
been fitted with a Gaussian.

The fit parameters in the bottom panel of Figure 3-26 show a pixel shift of dp =
0.448 £ .002 pixcels ot dv = 7.84 = 0.03 km/s. However, because the correlation was between
two calibrating FeAr emission spectra, this shift is #of due to a Doppler shift of the
spectrum. Because the FeAr emission lamps are attached to the spectrograph, their shifts
actually reflect the instrumental effect of a varying spectrographic geometry.

Miniscule variations of the optical path arise in almost any type of spectrograph, and
great effort can be expended in reducing their magnitude. Floor mounted spectrographs,
such as those in the Coude configuration, suffer the least variation because they are mounted
firmly to the ground. But even nightly temperature variations can still produce spectral

shifting on the order of one hundred meters per second due to the thermal expansion and
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contraction of the spectrographic components’. Telescope-mounted spectrographs suffer
from a variable gravitational torque™ as the telescope tracks an object across the sky, and this
can lead to spectral shifting of several km/s, as shown below in Figure 3-27. Because the
real stellar Doppler variations are expected to have an amplitude near 20 km/s, these
pseudo-Doppler shifts of the spectrograph are not insignificant and must be corrected. This
can be done by fitting any type of reasonable equation to the FeAr reference lamp shifts as a
function of time. In Figure 3-27, a single reference lamp was taken between each stellar
exposure as the telescope tracked a star across the sky over a period of about 3 hours. Note
the continuity of the curve indicative of a smoothly varying gravitational geometry.
However, if the telescope were moved significantly off-target and then moved back into
position, one could not be certain that the shifts would resettle into their previous trend.
Also, if the same target is observed two nights in a row, it is still not certain that the
spectrographic shifting during the two nights will mimic each other. Multiple exposures of
the reference lamps should also be taken between the stellar exposures instead of just one,
because they are usually bright and therefore impinge very little on the duty cycle. This
would allow for true characterization of the internal consistency of this method of flexure

calibration.

1 This statement follows from spectroscopic wotk the author performed at the University of Western
Ontario’s Elginfield Observatory, which houses a Coude spectrograph of resolving power 100,000.
52 This is also referred to as ‘flexure’.
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Spectrograph Flexure Calibration from Fe-Ar Lamps
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Figure 3-27: Spectrographic flexure as measured through the flexure-induced Doppler shifting of FeAr
reference lamps.

The cross-correlational stellar spectral shifts will be a superposition of the
spectrograph flexure-induced spectral shifts, Doppler shifts due to the orbital and rotational
motions of the earth, and the real spectral Doppler shifts due to the star’s intrinsic variable
motion. To produce a sequence of radial velocity measurements over time, a single
reference stellar spectrum and calibrating FeAr lamp (usually the first pair, or perhaps the
pair with the highest SNR stellar spectrum) must be used for all the spectral cross-
correlations in the sequence, and these provide an arbitrary zero point reference for the
variations. A curve for each continuous set of FeAr shifts is made, and each of them is
interpolated to the time of mid-exposure for each corresponding stellar spectrum. These

interpolated values are then subtracted from the stellar Doppler shifts in order to correct the
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pseudo shifts of the spectrographic flexure. An additional correction arises for long stellar
exposures with FeAr lamps spaced widely apart, given that there may be a significant
difference between the FeAr reference spectrum zero-point and its interpolated shift at mid-
exposure of the reference stellar spectrum. There should be no correction between these
two shifts, so the difference between the interpolated zero-point of the FeAr reference
spectra and the zero-point stellar shift should be subtracted from the FeAr shift set as well,
in order to force that difference to be zero.

Finally, the Doppler variations due to the radial velocity variations of the earth with
respect to the direction in the sky of the target object must be corrected. These variations
arise from both the rotational and orbital velocities, so that when the object is on the
meridian the rotational radial velocity is zero (and maximum at HA = +6"), and so that when
the object is in opposition to the sun the orbital radial velocity is zero (and maximum when
in quadrature with the sun). Standard algorithms™ can be used to determine the radial
velocities along the line of sight to the object, and these in turn are subtracted from the

Doppler shifts found above.

53 See Appendix A: Heliocentric Julian Day and Radial Velocity Corrections, for a Matlab script.
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3.2.3 Fourier Representation for the Radial Velocity and Radial

Displacement Curve & Comparison to Published Data

With the results from the section on photometry for the epoch and period of the

stellar oscillation, the radial velocity variations were phased according to their heliocentric

Julian date at mid-exposure. A visual analysis was carried out in order to determine the

correct order for the Fourier fit, using the lowest possible one so as not to inadvertently

induce non-physical high frequency variations in the curve.

For the sparse number of spectra that were taken at the DAO a first order sinusoidal

term plus an offset sufficiently modeled the data, as shown below in Figure 3-28.
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Figure 3-28: Radial velocities from the DAO, Oct. 2003. The data and their fit have been zeroed out to the

mean and are oriented in the stellar inertial frame.
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As these data alone are insufficient for the analysis in the Baade-Wesselink and
Balona methods, published values were used. The author would like to note that precise
radial velocity data are extremely hard to come by, even for a bright Cepheid which one
would expect to have been studied extensively in the past. Most of the sources found
(Barnes 1987; Bersier et al. 1994b; Gieren 1985; Haynes 1913; Kiss & Vinko 2000; Schmidt
1974; Wilson et al. 1989) were of insufficient precision for current use. It is difficult to
obtain good spectra, more so when they must be properly calibrated with reference to
standard stars™ and/or emission lamps for radial velocities. It is additionally difficult to
obtain good spectra with only one or two meter class telescopes (the type that are easy to
receive observing time on), as the limiting magnitude for these are quite bright and
integration times quite long. Long integration times are inconsequential to the SN ratio of
the data if the CCD chip is adequately cooled (with LN, for example), however for short
period stars one must avoid the spectral blurring intrinsic to observing a non-stationary
spectrum over too large a fraction of the pulsational cycle. For most longer-period Cepheids
a typical 2-hour integration would amount to an inconsequential fraction of the period, but
for SZ Tau such an integration would occupy approximately 0.5 km/s in intrinsic Doppler
shift of the spectrum. Additional blurring comes from the change in line-of-sight velocity
towards the object due to the rotation of the Earth, which can also amount to approximately
0.2 km/s if the integration was centered on the meridian and the object near the celestial

equator. These are all issues to consider when designing an observing plan.

5 Following the discussion in Chapter 3.2.2, it should be noted that if one is only using stellar reference spectra
for the radial velocity calibrations, it is not possible to account or correct for the underlying spectrographic
variations due to the different gravitational pointing geometries between the target and reference stars. The use
of standard stars is only sufficient only when it is known that the spectrographic variations are small enough to
be ignored.



102

The data of Bersier et al. (1994b) were the best available for SZ Tauri: they have the
largest number of data points spanning the pulsation cycle, and the lowest amount of scatter
in the curve. Their data were epoched and phased to those values listed in the paper, and
the results are shown below in Figure 3-29. Gieren (1985) also has reasonably precise data,
and they agree perfectly with Bersier et al.’s. There is also generally good agreement between
the DAO data and that shown here, although the DAO data do have significantly larger
scatter. As is the common practice, the Bersier data were listed in the observational frame
and so it was necessary to reframe them for use in the present analysis. The author prefers
to place the frame of the radial velocity variations in that of the observed star for general
publication, because it is the absolute expansion and contraction of the star which concerns

us most, not the motion of the star toward and away from us.
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SZ Tau Radial Velocity
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Figure 3-29: Radial velocity data from Bersier et al., 1992.

A third order Fourier fit modeled the data well and takes the form below in equation
(3.33); the coefficients follow in Table 3-8. The angular frequency @ is 2pi because the data

have already been phased, and ¢ is of course the phase.
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RV (@) = a, + a, cos(we) + b, sin(wg) + a, cos(2op) + b, sin(2op)

_ (3.33)
+ a, cos(3we) + b, sin(3we)

Coefficient | Value (km/s)

20 0 (0.6017)
2, 8.473

b, 4274

2, 1.396

b, 2.010

2 20.4276

b, 20.4625

Table 3-8: Coefficients for the 31 Order Fourier Radial Velocity Fit

Note the entry for the coefficient ‘a)’ in the above table: When a Fourier fit is
performed on any set of data, the first term in the fit is simply the data’s mean value. This
value can be due to any sort of bias offset, but in the case of fully calibrated stellar radial
velocity measurements, it is the systemic line-of-sight radial velocity of the star. So the
bracketed value for “a,” is thus from the fit of the data. However, in the mean inertial frame
of the star there must be no net radial velocity residual, so that over a pulsational cycle the
star returns to its previous radius and there is no overall increase or decrease in the stat’s
mean volume™. Therefore, when integrating the radial velocity curve such as to obtain the
corresponding radial displacement, the value for “a,” must be set to zero. Also, integrating
for the stellar radial displacement is the reason why the radial velocity data must be framed

in that of the star, and not in that of the observer.

55 On time scales very much smaller than those of stellar evolution.
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Bersier, et al. (1994b) state that the CORAVEL radial velocity data require a zero
point correction:

RV

absolute

= RV opave +0.4 km/s, (3.34)

so that the systemic mean radial velocity of SZ Tau is

<RV > =0.6017+0.4=1.017 km/s. (3.35)

13 »

Here we used the value of “a,” in regards to our frame of reference, and so took its positive
value from that of Table 3-8.

Although the Bersier data originate from a different epoch, it is not expected that
gross variations in the shape of the radial velocity curve have occurred between the date of
their observation and that of the MLLO photometry. While minor variations in the period
have been reported” for SZ Tauri, the sinusoidal nature and amplitude (Platais &
Mandushev 1993) of its phased light curves have remained constant. It ought to follow that
the radial velocity curve has remained constant in phase as well. Certainly the best
circumstance would be having simultaneously observed photometric and spectroscopic data.
Not having contemporaneous radial velocity data is likely the principal source of error in the
work presented here, although that is impossible to quantify.

The stellar-frame Fourier fit of equation (3.33) and Table 3-8 can easily be integrated
for the determination of the stellar radial displacement, and this is shown below in Figure
3-30. If the integration is performed numerically, it is necessary to subtract the mean value
from the result so that the displacement correctly brackets zero. The equation can obviously

be integrated analytically and in this case the curve will correctly bracket zero displacement.

% However, these are somewhat dubious given the authot’s evaluation in Chapter 1.2.
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It is important to have the displacement curve correctly zeroed as this corresponds to the
mean radius of the star, which we aim to determine. Note as a simple general observation
that the star’s outward expansion is less than that of its inward contraction, and hence
spends more time larger than its mean radius than it does smaller. With the radius
determined in Chapter 4, the radial variation amounts to approximately two percent of the

mean stellar radius.

SZ Tau Radial Displacement
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Figure 3-30: Integrated radial velocity curve. The displacement curve has been zeroed to its mean and the
projection factor has been applied.

A projection correction must be applied to the integrated velocity curve in order to
obtain a more physically accurate model of the stellar displacement. In most cases the radial

velocity data ultimately come from some form of spectral line positioning technique.
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However, spectral lines are stellar-disk integrated phenomena, and so the observed radial
velocity is the sum of all vector components: those pointing directly toward the observer at
the centre of the disk, components pointing at right angles to the observer at the edge of the
stellar disk, and all components in between. In the first-order approximation, the projection
factor is the disk-integrated product of projection annuli weighted with model limb
darkening intensity values. For this work, we used the relation from Gieren et al. (1989)

p=139-0.03log P (3.36)
where ‘¢’ is the projection factor and ‘P’ is the period (in days) of the Cepheid in question.
For SZ Tau’s period of P = 3.1488 days, the projection is factor is p = 71.375.

Sabbey et al. (1995) explore the behaviour of the shape of spectral lines over the
pulsation cycle. They report the need for a phase-dependent p-factor due to line symmetry
variations changing systematically between the expansion and contraction phases, ultimately
due to changes in the atmospheric depth of the line formation over the cycle. Gray (2007)
used spectral-line modeling to fit observed spectra in a successful attempt to determine
directly the radial velocity variations of the surface of a star, instead of converting from an
observed radial velocity to a pulsational one through the p-factor. His method can easily be
turned around such as to directly calibrate the p-factor as a function of phase and period,
although he did not have a statistical sample with which to do so — the work was more of a
proof of concept based on a small sample of representative Cepheids.

Figure 3-31 below shows the relevant observational data cutrves required for the

Baade-Wesselink and Balona analyses. If we recall equation (2.8)

m(¢) = A-Cl (@) + B-5log(R, + 5R(¢)),
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we see that if a star did not vary in radius the logarithm term could be absorbed into the
constant, and the magnitude would then scale directly with the colour index. But because
the colour index is representative of the stellar effective temperature, one would not expect
colour index variations without changes in radius due to simple thermodynamics. If the

radial displacement 0R(¢) is non-zero and not in phase with the temperature variation, the

magnitude and colour curves will no longer directly scale to each other. The radial
displacement term will then act as a perturbing or correcting effect, the degree of which
depends on R, which then combines with the colour curve to produce the light curve. This
can be seen directly in the figure below. Note that the displacement curve lags the light

curve by about 0.34 phase, while the colour index lags it by about -0.04 phase.

Displacement, Differential V, and Mean Colour Index Curves
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Figure 3-31: Displacement, Differential V, and Mean Colour Index curves.
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Chapter 4: Results

4.1 Baade-Wesselink Analysis

The basic methodology of the Baade-Wesselink method was introduced and discussed
in Chapter 2.1; here it is applied to the data of SZ Tau discussed in the previous sections.
A graphical user interface (GUI) software program, called BaadeWesselink.m, was

written in MATLAB to facilitate the analysis. A screenshot is presented below in Figure 4-1.

Mean Colour Index
+  Selected CI Values

Raclial Velocity
Displacemen t

£ RV Paints
£ Displacement Points

Figure 4-1: Screenshot of Matlab GUI BaadeWesselink.m.
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Upon entering the program the GUI prompts the user to open the relevant files for
the analysis. Following the derivation of the method in Chapter 2.1, the required input data
are the differential magnitude curve, the radial displacement curve, and the colour index
curve. The colour index curve used in the analysis is the one from Figure 3-12, i.e. the mean
colour index of the 4 adjacent-filter combinations of the five UBVRI passbands. Because
only the phases of equal colour index are needed in the solution, the colour index curve does
not need to be fully standardized. Using the mean colour index curve allows for unique
solutions to the radius in each of the five passbands, which will be the averages of the results
if each colour index and passband combination were used individually (as is commonly
done; for example see Milone, et al. (1999)).

After loading the files, one is prompted to select the region of the colour index curve
to be used for determining the points of equal value on the alternate branch of the curve.

This can be selected manually or default to the range ¢ =0.1 to ¢ =0.4 as shown in Figure

4-1. Itis best to use the steepest part of the index curve for these points as their phases are
necessarily more well defined there, due to the slope of the curve being highest in that
region. It is also necessary that the selected points be not too near each other on either side
of the curve, because the difference in magnitude at phase points close together necessarily
goes to zero and results in an indeterminate solution. This is a problem the Balona solution
avoids, as we will see in the next section. An arbitrary number of forty points is evenly
spaced throughout the range, and each is used in the subsequent solution. Because the
number of points which is used in the solution is arbitrary, it is possible only to determine a
mean radius from the set of solutions, and no realistic estimate can be made of the error on

the mean because this arbitrarily scales to zero as the number of points increases to infinity.
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At each solution however, it is possible to calculate an individual error through standard
differential techniques, such as those described in Melissinos (1966).

The final task is to select the search region on the alternate side of the colour index
curve for the determination of the forty corresponding phases of equal colour index. The
user graphically identifies the region of the curve in which to find values of equal colour

index, so in the case above selecting from @=0.5 to ¢=0.95 would be appropriate.

Because the colour index curve is usually a noninvertible function, such as a truncated

Fourier series, it is necessaty to iterate within the region 0.5<¢<0.95 to find the
corresponding colour value and its phase within some specified tolerance. Typically a
tolerance of +107° phase (or 10 °XP =0.27sec) was used, which is much smaller than the

associated photometric errors translated into the time coordinate via the slope of the index
curve. For example, the slope on the left branch used for the initial point selection is
roughly

042025 475 mags / phase ..
0.45-0.05
The average error of the mean colour index curve from Figure 3-12 is 0.006 mags. The

average error translated from the photometry into the time dimension is then

0.006 mags
0.375 mags / phase

=0.016 phase.
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This is much greater than the tolerance value, and almost 2% of the phase’’. This simple
analysis also shows that the solution of the Baade-Wesselink method breaks down for point
pairs near the minima and maxima, where the slope of the index curve nears zero.

For each of the forty points on the ascending-branch in Figure 4-1, the alternate
region is searched for an equal value to within the specified phase tolerance. The algorithm
begins by calculating the value of the index curve at the midpoint phase of the search range.
If the calculated value is greater than the comparison value, the phase point steps ahead by
half of the search range. This time the calculated value will be too low, so the step is divided
by 2 and the phase point moves back by thence a quarter of the search range. If the new
calculated value is once again too high, the step is halved another time and the phase point
jumps forward by an eighth of the search range. This process is repeated until the step size
becomes less than the tolerance value, when the corresponding phase of equal colour index
is recorded, and the Baade-Wesselink solution is calculated. The iteration then exits and is
repeated for the remaining points from the left side of the index curve. Figure 4-2 below

shows the result, continuing from Figure 4-1.

57 Two percent of the phase is a non-trivial translation of the error, and 0.006mags in photometric colour index
dispersion is reasonable for ground based work.
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A

Figure 4-2: BaadeWesselink.m after the sequence of iterations.

The top plot on the right hand side of Figure 4-2 shows the step size reached at the
last iteration and these are all, of course, less than plus or minus the tolerance value. The
middle-plot on the left in the above figure shows that at phases of equal colour index, the
magnitudes are not the same and differ by the amount shown in the 2™ plot in the right
hand column. This is due to the radius of the star not being the same at these phases,
differing by the amount shown in the 3" plot on the right column. Recalling the Baade-

Wesselink solution

_ OoR(p,) ~10*M"= OR(p)

Ro 10~2Mer _q

, 4.1)

O0R(¢,) and OR(p,) are the radial displacements at the respective phases of equal colour

index (3" plot, right column), and ML, is the difference in magnitude (labeled ‘Radius Index’
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in the figure) of the light curve between the phases ¢, and ¢,. The distribution of solutions
for R, (in solar radii) at each of the forty phase pairs of equal color index is shown in the
bottom plot of the right hand column. The results for the five UBVRI passbands are shown

in the next figure.
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Figure 4-3: The distribution of Baade-Wesselink solutions for the UBVRI passbands.

It is immediately apparent that the Baade-Wesselink solution can produce a very
wide range of solutions for the mean radius, depending on which phases are used. Other
authors have utilized large numbers of combinations of indices with passbands such as to

dampen the statistical errors for a better estimate on the passband-averaged mean solution
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(as done for example in Milone, et al. (1999)). Nevertheless, it is discomforting to see such a
large variation in the solution for the radius - one would expect to see a flatter distribution of
solutions with phase. Certainly, narrowing the phase range for the solutions will hide the
large range of variations in the solutions. The reassuring observation is that all passbands
follow the same general trend, and this may indicate that the problem is systemic to the data.
A problem previously mentioned in this work is that the radial velocity data used were
archival. However, redeterminations of Gieren’s 1985 and Bersier et al.’s 1994 data using
epochs from photometric data close in time to their observations, and using the average
period from Table 1-2, show no changes in shape or in phase. The effect of a mismatch in
phasing between the light and RV curves, which would be the most obvious (and simple)
problem, has nevertheless been investigated. The radial velocity data were shifted in phase
by plus and minus 0.1phase, and the resultant distributions of solutions were compared to the
solutions with no change in the phasing. The results for the V passband are shown below in

Figure 4-4.
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Change of Solution Chstribution with BV Phase Shifts
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Figure 4-4: Radius solutions and RV curve phase shifts.

A rough linear fit to the mean of the three solution curves indicates sensitivity, valid

only around the range of RV phase shifts —0.1<A¢p < 0.1, of 2 solar radii per percent of

phase mismatch between the radial velocity and photometric curves. Sensitivity such as this
is expected, and indicates the significance of the limiting 2% error in phase-point selection
accuracy of the colour index data discussed earlier, implying a fundamental accuracy limit of
4 solar radii in any single solution. Of course, the added uncertainty in the radial velocity
and single-passband data only serve to push the accuracy to lower (i.e., higher solar radii)
limits than this.

Ultimately, it is apparent that small phase mismatches between the photometric and
radial velocity data only raise or lower the mean value of the solution, while the general

shape of the solution distribution remains relatively constant and scales roughly linearly with
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the phase mismatch. In other words, the distribution of solutions was not flattened out and
the worrisome large range of solutions was not corrected through this level of adjustment of
the phase matching between the two types of data. Curiously, a phase shift in the RV data
of -0.7 phase (or +0.3 phase) did produce a relatively flat solution distribution of approximately
half the value, but there is clearly no way to justify such a shift given that the phases of the
radial velocity data re-determined by the author were found to agree effectively exactly with
what had been originally published.

Phase mismatches between the passband and colour index curves might possibly be
a problem, although these are formed from the same data and so the sign of the phase
discrepancy would be ambiguous. Also, this again would only raise or lower the mean value
of the solution and would simply have a different level of sensitivity than that above for the
RV curve phase shifts. In the discussion of the Balona method ahead, we will see why this is
and why it can be expected to be so. Shifting the phase of the mean colour index curve by
10.01 phase indicated a sensitivity of 16 solar radii per percent of phase mismatch between
the colour index and light curves. This indicates how tremendously important it is to
propetly separate the surface flux contribution from the luminosity curve of a Cepheid.

It must be concluded that in order to change the shape of the solution distribution we
must have a change in the pulsational shape, and not (just) the phase match, of one or
several of the three input data curves (these being the radial velocity, passband, and colour
index). The radial velocity curve may be the most suspect, given the comparison of the
author’s DAO data to that of Bersier, et al. (1994b) shown in Figure 4-5 below. However,
the DAO data are too sparse to make any definitive statements. On the other hand, the

differential UBVRI passband data presented in this work match extremely well with other
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published data (as in Figure 3-13 on pg. 70), and the colour index curves are formed ox? of
the passband data, and the mean colour index used in this analysis also matches quite well
with other published data (as in Figure 3-15). In exploring the solution distributions using
the four colour index curves individually, the shape of the solution distributions follow that
of using the mean index curve only, and indeed for an individual passband the mean of the
four unique colour index curve solutions is the same as that of using the mean index curve in
the solution for that passband alone. Using non-adjacent passbands for individual colour
index curves (for example, B-I) does not change the general shape of the solution
distribution either. So at this point we have relative confidence in the colour index curves
and their mean. The mean Baade-Wesselink radius in each of the UBVRI passbands and the

passband-averaged result are tabulated below in Table 4-1, and plotted in Figure 4-6.
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Figure 4-5: DAO and Bersier et al. radial velocity curves.

Filter | Radius (Ry,) | Stdv*® (Ry,,)
U 40.7 13.2
B 35.4 10.8
Vv 36.4 10.8
R 38.3 11.1
I 38.9 12.0
Mean | 37.9 £ 2.1 -

Table 4-1: Baade-Wesselink Radii

58 As mentioned in the text, the Baade-Wesselink method does not allow for meaningful error estimates in each
of the passbands. However, one can still meaningfully take the standard deviation of the passband means as
the error on the passband-averaged mean.
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Mean = 379 +- 2.1 Ran

Figure 4-6: Baade-Wesselink radii. The trend of radius with passband correlates almost perfectly with the
epoch lag distribution from Chapter 3.1.2.
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4.2 Balona Analysis

Recall equation (2.8) from the introductory discussion of the Balona method in

Chapter 2.2:

m(¢) = A-Cl(¢)+B-5log(R, + 0R(¢)) . (4.2)

Here, m(p) is the light curve in one of the UBVRI passbands, CI(p) is the mean colour index
and JdR(p) is the radial displacement. The parameters .4 and B are simple linear scaling
factors, while R, is the mean radius of the solution - the parameter we are most interested in.
The equation can be solved for the parameters numerically through nonlinear least squares
data fitting with the Matlab function “fwinunc’, which determines the unconstrained”
parameters of a given functional resulting in a least-squares minimum of the input data about
the fitting curve. In practice we have a truncated Fourier series for each of the three input
data curves as functions of phase, so for the input data required in fminunc we simply
compute the Fourier curves at one thousand evenly distributed points between zero and one
phase, and fwinunc then reduces the deviance of these points from each other through
manipulation of the relevant parameters within the given functional topography of equation
(4.2).

It is quite informative to consider the particular role each term and each parameter in

equation (4.2) fulfills. The term (p) appears by itself and its role is obvious, although we

% There is another function for constrained parameter fitting as well, but there is no need to constrain the
parameters to any range in this case, as the solution converges quickly. The algorithm uses a “quasi-Newton”
iteration method as discussed in the Matlab help pages.
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see on the right hand side that it arises out of the product between temperature (or surface
brightness as represented by the colour index, ie. A*Cl(p)+B) and surface area (i.e.
5log(R,+0R(p))). If the star did not vary in radius (i.e., 6R(p) = 0) we would have that the
magnitude scaled linearly with temperature, the surface area term being absorbed into the
constant B in order to simply shift the colour curve up or down to match the ordinate of

*_ but imagining this aids the

7(p). Of course in practice such a situation would never exist
interpretation. In Figure 4-7 it can be seen that the colour index and light curves 4o nearly

scale linearly with one another, but it is obvious that a horizontal shifting in phase is needed

in order to bring the curves into line with one another.

% Because we are speaking of curves, this would imply a variation in temperature. A variation in temperature
would be associated with a variation in radius due to simple thermodynamics.
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Figure 4-7: A linear fit of the colour index cutve to the light curve.

Now with the surface area term a function of phase it no longer solely has an effect
in simply shifting the right side of the equation vertically up or down. Essentially, one could
think of 5/g(R,+0R(p)) as being a series of constants which depend on phase and which
have a non-linear effect on the right side of equation (4.2). It is a subtle point to consider
that this no longer has a role in uniform vertical shifting of the right side of the equation, but
rather skews the linear colour index fit to ultimately produce a shift of the linear fit in the
horizontal coordinate. If one recalls Figure 3-31 it is easy to visualize the interaction of the

three input curves with one another; the plot is reproduced here.
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Displacement, Differential V, and Mean Colour Index Curves
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Figure 4-8: The light curve is clearly most dependent upon the colour index, with the radial displacement
having a lower order perturbing effect.

The important insight is that it is the value of K, in the surface area term which
determines the amount of horizontal skew afforded by it. For large R, the entire term will
more closely mimic that of a simple constant, because the variation of dR(p) superimposed
onto R, will be only a small percentage (especially after the logarithm is taken of it). For
smaller R, the variation of JR(p) will have a greater skewing effect. In this way one can
understand how the colour index and radial terms are linearly independent of one another,
and also how exactly the radial term affects the solution such as to allow an estimate to be
made of it in the fitting process. Essentially, the colour index must lead the light curve
because the radial displacement lags it - they combine to produce the light curve with a

maximum in between.



125

Note that the lag of the displacement curve is significantly more, and of the opposite
sign, than the lag of the colour index curve relative to the light curve. This can be expected
on two respective counts. First, the luminosity of a star is generally dependant on
temperature to the fourth power, while on radius to only the second. So for changes in each
of the dependencies of relatively similar percentages, it is the change in temperature which
will have the dominant effect, and this is why the colour index and light curves so closely
mimic each other as seen in Figure 4-7. The radial displacement has a lower order effect,
and this is why it lags the light curve much more significantly than the colour index.
Secondly, borrowing from the “squeeze theorem” of differential calculus, a curve which is
itself the product of two curves will have its maximum at a point somewhere in between the
maximum of its constituent curves, and so we necessarily have that the time of maximum
brightness occurs between the times of maximum temperature and maximum radius. In
general it occurs closer to the time of maximum temperature because that is the dominant
factor. These simple facts zpose the need for passband epoch lagging if indeed a colour
index is representative of effective temperature and surface brightness, because it is the lag
between passband curves which give rise to an index curve the maximum of which occurs at
a time before either of the passbands. For stellar pulsation, with the added effect of a radial
displacement curve and accounting for the squeeze theorem, this maximum must always
occur before any of the passbands reach their maxima. And if each passband has its own
time of maximum brightness, then following the discussion regarding Figure 4-7, we must
unavoidably conclude that each passband will result in a different radius in the solution. At
each passband, different amounts of skew will be needed from the radius term in order to

converge the fitting routine, and these will manifest as different values of R;. There is no
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reason to assume that these are not the physically real geometric properties of the star.
Indeed, the Baade-Wesselink analysis in the previous section did show a correspondence
between passband and radius, and presently we will see the same for the Balona analysis.

A representative Balona fit is shown in the next figure. The input data were the
same as in Figure 4-8. A Matlab program called “Balona.m” was written to perform the fit
automatically, with the user supplying the relevant data in the input arguments of the
program. The program also displays a live video of the fitting process as the Matlab
subroutine (i.e. “fminunc”) explores the parameter space of the fitting equation - it rather
looks like a couple of tangled up worms wriggling their way around until they find a

comfortable resting position as near to each other as possible.
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Figure 4-9: Balona fit of the mean colour index and radial displacement curves to the light curve.
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In the above figure we see an increased deviation of the fit after about 0.5 phase.
This is likely due to that region suffering from phase gaps in the photometric data, leading to
a poor constraint and estimate for the colour index and passband curves in that area. The
standard deviation of the residuals in the figure is typical of those for the other passbands,
the mean deviation falling to within the fit tolerance (10" arbitrarily) specified when calling
frinune.

The Balona method uses the entire data set, unlike the Baade-Wesselink method
where the solution points are restricted to an arbitrary number within a “safe” range of the
possible solution space. Similarly however, although it is possible to calculate analytically the
statistical errors on the fit parameters for each solution, because we are fitting Fourier curves
of 1000 points the calculated errors still qualify as being arbitrary. Using 100 or 10,000
points give more and less error respectively, as any random statistical error always scales
inversely with the square root of the number of data points; therefore, these errors are
internal to the solution only. The Balona radius in each of the UBVRI passbands and the
passband-averaged result are tabulated below in Table 4-2, and plotted in Figure 4-10. There
is an obvious correlation between the Baade-Wesselink passband solutions (Figure 4-6) and

the Balona solutions below, and this is discussed in the following section.
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Filter | Radius (Ry,,) | Stdv® (R,,)
U 45.6 0.001
B 39.9 0.002
\Y% 40.8 0.003
R 42.6 0.001
I 43.5 0.002
Mean | 425+ 2.3 -

Table 4-2: Balona Radii
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Figure 4-10: Balona radii.

1 The errors on the 5 passband radius parameters are internal to the solution only.
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4.3 Discussion of Results

The correlation between the two methods of solution is shown in the next figure.
The Balona solutions are approximately seven percent larger than the Baade-Wesselink ones

and have an offset of 1.4 solar radii, so that at 42.5 Ry, the difference between the mean of

un

the two solutions is 4.6 Ry, or close to ten percent.

Sun>
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Figure 4-11: Baade-Wesselink vs. Balona radii.

It is not at all surprising that the two solution distributions mimic each other so well
over the passbands, although there is a clear systematic difference between them. Following

the development of the solutions in Chapter 2.2 it was clear that they were derived from the
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same starting point (equation (2.2)), and indeed one can easily derive the Baade-Wesselink
solution from the equation for the Balona method as a special case®. Recalling the Balona

equation (4.2) (and (2.8)),

m(¢) = A-Cl(¢)+B—-5log(R, +oR(¢)), (4.3)

one simply needs to subtract this equation from itself at phases ¢, and ¢, where the
respective colour indexes are equal, leaving only a difference in magnitude on the left and a
logarithmic difference in radius on the right, all other terms cancelling. It is then quite a
simple matter to solve for R, and this results in the Baade-Wesselink solution of equation
(2.6). The two solutions are fundamentally identical — they are simply different treatments of
the application of the method. The systematic difference that does exist between the two
solutions can easily be attributed to the clear systematic difference between eithet’s practical
calculation; as we have seen, the Baade-Wesselink method requires the neglect of certain
ranges of legitimate data, where equal colour indexes occur at too near of phase and at
phases too near zero slope in the colour index, while the Balona method has no such
restriction.

In any case, the Baade-Wesselink and Balona methods agree in their passband
averaged mean radius to essentially the one sigma level, the upper one sigma limit of the BW

solution being 40 Ry, while the lower limit of the Balona solution is 40.2 Rg,,. In making

Sun
this comparison, however, we realize that the Baade-Wesselink method is simply an

alternative approximation to the more comprehensive Balona solution, and that

fundamentally we are not extracting or comparing any unique information between the two

62 Historically the Baade-Wesselink method was developed first.
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solutions. Nevertheless, the mean and first moment of the Baade-Wesselink and Balona
solutions is R =40.2 + 3.3 K, , but we will use the Balona results for the radius found in
this work, i.e., from Table 4-2:

(RYq 1as =425+23 R, . (4.4)

Eleven previous solutions for the radius are listed below in Table 4-3. The Balona
solutions generally report larger radii than the others, however there is quite good agreement

between solutions in most cases.
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Reference Radius (Rg,) Method
Burki (1985) 36 Wesselink®
Gieren (1985) 342+£3 Barnes-Evans®
Sanewal & Rautela (1989) 378 £1.2 Baade-Wesselink®
Laney & Stobie (1995) 38.6 £ 1.2 Balona®
V& V-R:359 £ 2.8
Gieren, et al. (1997) K & K-J: 45.6 £ 4.0 Barnes-Evans®
V& V-K: 2771 0.5
Krockenberger et al. (1997) 36.3 + 53 Baade-Wesselink®
Ripepi et al. (1997) 44.8 CORS/Barnes-Evans®
Sachkov (1997) 43+ 6 Balona®
Turner & Burke (2002) 348 1.4 Baade-Wesselink®
Barnes, et al. (2003) 39.6 X6 Bayesian Barnes-Evans®
Postma (this work) 425+23 Balona®
Average 38.2% 4.9 -

Table 4-3: Radius determinations for SZ Tau.

The radius determined in this work matches within experimental error the average of
the other 11 values, and helps confirms the findings by Sachkov (1997) that the radius of a
(low-amplitude) Cepheid can be used to determine its pulsation mode. Sachkov (zbzd.)

established two relations for the period-radius relationship, based on the segregation found

93 As described in Burki & Benz Burki, G., & Benz, W. 1982, Astronomy and Astrophysics, 115, 30.
64 Also known as the Surface Brightness Method.

65 As described in this work.

% As described in referenced publication.
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in his study of radius vs. period for 13 DCEPS Cepheids; the segregation could be explained
if stars of the two groups pulsated in either the fundamental or the first-overtone mode,
given that overtone pulsators will have a swollen radius for a given period. This study would
then imply that not all DCEPS are overtone pulsators.

Using the mean temperature determined in Chapter 3.1.3, which was found to match
well with that determined by Sanewal & Rautela (1989), and the radius from equation (4.4),

the average luminosity of SZ Tau was computed to be

Ly, ., =2138 + 2351,
or (4.5)

L
log—2™ =333 + 0.05

Sun

SZ Tau is, expectedly, a class Ib supergiant with a mean spectral type of F7.5.
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Chapter 5: Final Comments and Future Work

The passband epoch lagging phenomenon discovered in the data of this work was an
unexpected result. Phase-lags of temperature to light, radius to light, and temperature to
radius have been noted by various authors (Baker & Kippenhahn 1962; Berdnikov &
Pastukhova 1995; Fernie & Hube 1967; Gieren 1982, 1985; Kukarkin 1975; Madore &
Fernie 1980; Merengo, Karovska, & Sasselov 2004; Moffett 1989; Rosseland 1949; Ruoppo
et al. 2004; Scarfe 1976; Simon 1984; Szabo, Buchler, & Bartee 2007). However, passband
epoch lagging appears to have been largely over-looked, even over the century or so of
filtered-light curve observation of Cepheid variables. Very high quality photometry and
advanced reduction methods are required in order to see the phenomenon at all, and not a
large percentage of published data may have been sufficiently precise.

Conceptual reasoning and explanations for epoch lagging have been discussed in
previous Chapters, and now modeling the light and radius curve variations using simple co-
sinusoidal oscillations lends confirmatory rationale. Let the effective temperature of a

Cepheid, with the maximum of the temperature curve defining zero phase, be
T(p) =T, +5T(¢) -1
and let the radius be
R(p) =R, +6R(p—1) (5.2)

where ¢ is the phase (ranging between 0 and 1) and 7 is the lag of the radial maximum to

that of the temperature (about 0.37 phase for SZ Tau). For each of the
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J;= {U; B; V; R; I} Johnson passbands, we can approximate the stellar luminosity L(p)

with Planck’s black-body law such that

“2hc® 1
L () =47R(9) | - —5——3,(2) d4 (5.3)
0 elkT((p)_l

where [(4) is the transmission profile of the 7th passband (Moro & Munari 2000). On the

magnitude scale we have

m; () =—2.5log,, (L; (9)) +¢; (5.4

where ¢, is a zero-point constant, which for the purposes here can be assumed equal to zero.
Using sample physical values of SZ Tau for equations (5.1) and (5.2), we can approximate a

general pulsation as
T () =6015+ 227 *cos(2zp) (5.5)
and

(5.6)

Sun *

R(¢) = (42.5+ %COS(Zﬂ(@—O.S?)))R

First, it should be obvious that a constant surface area, thermally-varying object will
produce light curves which are in complete phase with one another. This will likewise occur
when a radial variation is added which is in phase with the temperature variation, i.e. when 7
is equal to zero. Colour index curves formed from these curves will also be in the same
phase and will maximize at the same time as the light curves. However, if a radial variation
is introduced which is 7of in phase with the temperature variation (as in equation (5.6), i.e. 7
# 0), the resulting light curves will show an epoch lag for the simple fact that the passband

flux curves have unique amplitudes, and these combine uniquely with the radial variation to
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produce luminosity curves each with (sequentially) unique times of maximum, as can be seen

in Figure 5-1 below.
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Figure 5-1: Johnson UBVRI light curve and colour-colour plot.

Not all the known properties of a Cepheid light curve are reproduced with this

preliminary model, however. First, all the colour indices formed from this model maximize

at the exact same time, i.e., at phase zero. Though the various colour indices from Chapter 3

were found to have different times of maximum, this may not be argued as a general

property of Cepheids because it hasn’t really been studied before. But second, and this is

related to the first point, there is no colour-colour looping in the colour-colour plot of

Figure 5-1. All this is simply because the radial term of equation (5.3), when inserted into
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equation (5.4), gets subtracted out when forming the colour index because it has no
passband dependence. However, colour-colour looping zs a general property of Cepheid
light curves (Diethelm 1983; Gieren 1982; Onnembo et al. 1985).  So equation (5.6) can

then be modified so that

R(p)=(<R > +%COS(27T((D—O.37))) R 5.7)

Sun

where <R> is the mean radius of the 7th passband. Computing new model light curves
with passband-radius values taken from Table 4-2 results in Figure 5-2 below. In addition to
each passband maximizing at a (sequentially) unique time the colour-colour plot now shows
an open loop, indicating that the colour indices are no longer maximizing at the same time
and so are no longer in phase with each-other. This highlights a potentially severe problem
because proper separation of the temperature contribution from the light curve is so
important when computing radii with either the Baade-Wesselink or Balona methods, and so
puts into question which colour index is the appropriate one to use. This is ultimately why
this author used the mean colour index curve in his solutions for the radii. In Gray (1994),
Gray & Brown (2001), and Gray & Johanson (1991), it is shown that line-depth ratios of
temperature-sensitive to temperature-insensitive lines can provide a precise index (order
~1K) on stellar effective-temperature variations. For a given star, line-depth ratio variations
are completely independent of metallicity changes (because there are none), surface gravity
variations (because line-broadening effects are divided out in the ratio), and most
importantly the surface area, which does change and which as we have just seen does affect the
standard colour indices. In addition to Gray (2007), where high-resolution spectroscopy was

used to directly compute the radial velocity variations without the need of the ‘p’-factor, one
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may produce an original observational methodology for separating the temperature and

radial effects from the light curve, and ultimately for determining the radius using either the

Baade-Wesselink or Balona approach.

Johnson UBVRI Model Light Curves
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Figure 5-2: The colour-colour plot now shows an open loop, which is a general feature of Cepheid pulsation.

To completely reproduce all the qualitative properties of SZ Tau’s variation, we must
consider that the U passband shows a larger radius than any of the others, not quite fitting
into the general sequential trend. In Table 3-5 we also saw that the U passband epoch
occurred slightly later than the B passband, again not fitting the general sequential trend.
The physical explanation for this may come from the Balmer discontinuity pushing the

formation of the continuum around 3650 A (the center of the Johnson U passband) to much
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higher levels in the photosphere because of the very strong absorption on the short-
wavelength side of that filter (Gray 1992, pp 160-163). We may thus consider that different
passbands, being formed at distinct layers within the photosphere, may also have unique

amplitudes of variation so that

(5.8).

Sun

R(p)=(<R > +%cos(2ﬁ(¢—0.37))) R

If we make the supposition that higher passband radii undergo larger amplitudes of
variation, so that OR, ={2.2; 1.4; 1.6; 1.8; 2.0}, we qualitatively reproduce the observed

properties of SZ Tau’s oscillation: the colour-colour loop opens up significantly more, the
passbands and colour indices have unique times of maximum, and the U passband
maximizes after the B passband. This is shown in Figure 5-3 below — the phase-times of

maximum for the UBVRI passbands are 0.023, 0.02, 0.029, 0.04. and 0.56, respectively.
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Johnson UBVRI Model Light Curves
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Figure 5-3: If each passband-layer of the photosphere has a unique amplitude of radial excursion, all known
properties of SZ Tau’s pulsation can be reproduced.

If we let the blackbody surface flux contribution of equation (5.3) be generally

f (1, T(@)), we can write
F(T(0) = f(ALT(9)d(A)d2 (5.9).

This more general form would allow spectral-type phase-interpolated Kurucz (1979) stellar
model atmospheres to be used for the surface flux contribution, and would more properly
simulate the behaviour of the various stellar absorption feature variations as the Cepheid
moves through spectral-types in the course of its pulsation. We can then model a light curve

generally as
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m, () =-2.5l0g,, (F, (T (¢))) - 2.5l0g,, (47 R, (¢)°) +C,

=-2.5log,,(F, (T, + 8T (9))) —5109,, (< R > +6R (9 —17;)) + € o0

once again letting the phase of maximum surface flux define the epoch, for simplicity.
Because the driving force of the pulsation comes from a layer far below the photosphere, the
pulsation will sequentially pass through each passband-layer as it propagates to the stellar
surface, and so the phase-lag of radius to temperature should be passband dependent as well,
ie, 7 = 5. Note that equation (5.9) (i.e., the first term in equation 5.10), as essentially a
function of spectral type, is the linear colour index approximation of the Balona solution, i.e.
—2.5lo0g,,(F (T, + 6T (¢))) = A-Cl +B (5.11).

One may additionally consider that f(A,T(¢)) will be dependent on the depth of
formation as well, so that the spectral flux distribution in each passband is

f (4, T.(9), R (9)). In the most general terms, the time of maximum light for each passband

can be determined by

dm(e) _,_,dIn(R(g))  dIn(F(T(¢))

do do do
dIn([ £ (2,7 (0), R (@)-3,(1)dA 12
_ 2V (p—m) 0
<R >+5R(p-1n,) do

where v,(p-7,) is the radial velocity curve specific to each passband. Equation (5.12) can be
solved numerically, and the passband dependencies of the various parameters are indicative
of non-commensurate times of maxima for each passband-layer of the photosphere.

Epoch lagging gives the astronomer a method with which to peer into the third
dimension of the stellar photosphere and provides for a more complete understanding of the

structure of supergiant atmospheres. It also highlights several limiting factors in the current
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methodology of determining Cepheid radii and ultimately the precision in the period-
luminosity relationship. Separation of the surface flux contribution from the light curves
directly, and significantly, affects the solution for the radius in the Baade-Wesselink and
Balona methods. This has been under-appreciated to the point that some authors have
mistakenly recommended that infra-red passbands should be used for the colour-index,
reasoning those passbands are more sensitive to radial variations as opposed to temperature
ones. Though this may be true, it convolutes the fundamental desire to use colour indices to
represent the surface flux contribution and its variations. The best colour index to form
would be one in which one passband is highly sensitive to temperature, with the other one
being much less so; for example, U-I. But even if a truly accurate surface flux index can be
formed when subtracting two passbands, one still has the result that each passband will
show a different radius because each passband has a unique phase lag to that of the
temperature, ultimately because each passband originates at a unique depth in the stellar
photosphere. In this work, we have seen a variation of roughly 5 solar radii in the solutions
between the U and I passbands, an “error” of roughly 10%. Whether or not this is
physically accurate may be questioned, but ignoring passband epoch lagging does nothing to
improve the current limit of £10% in the period-luminosity relationship. Because there has
been no standardization within astronomy of which passbands and which colour indices are
to be used when solving for the radius, one can easily conjecture that the current limit in
precision is at least partially due to the epoch lagging phenomenon and the physical
properties of stellar photospheric structure it represents.

There are many observational programs which could be undertaken in order to

further explore some of the phenomena discovered and theorized in this work. High time



143

resolution photometry over entire cycles, where the time between sequential observations is
less than 1/100™ of the cycle, would be valuable for exploring the possibility of period
variations between passbands on short time scales - this is not possible with the vast majority
of existing data because most programs only observe at a frequency of less than one data-
point per cycle. Such data, if sufficiently precise, would also allow accurate determinations
of the phase lags between passbands and any variations therein. If a program were
undertaken with a large number of Cepheids, one could also explore possible general
correlations between epoch lag and radius, furthering our understanding of stellar
atmospheric structure. High resolution spectroscopic observing programs would also be
extremely beneficial. Modern techniques for determining temperature variations and
pulsation velocities could be utilized for more accurate separation of those effects from the
photometric light curves. Spectral line bisectors could be utilized for determining the
amount of and variation in velocity spans between higher and lower layers of the
photosphere during different phases in the pulsation, and these could be correlated with the
passband epochs. Similatly, radial velocity profiles from long and short wavelength regions
of the spectrum could be used for exploring passband-dependant pulsational displacement
curves. Narrow-band and spectrophotometric work could also help to delineate the
behaviour of the epoch lag with wavelength. And observation of Cepheids in eclipsing
binary systems in various passbands could be used for directly determining the radius
specific to each passband.

A deeper understanding of stellar photospheric structure, at least in regards to

Cepheid pulsation, is cleatly possible. And with the proper data with which to accomplish it,
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would clearly improve (at least) the period-luminosity relationship. This is left to a future

work.



145

REFERENCES

Alcock, C., et al. 1995, The Astronomical Journal, 109, 1654

Antonello, E.; Poretti, E., & Reduzzi, L. 1990. in Astronomical Society of the Pacific
Conference Series, Confrontation between Stellar Pulsation and Evolution, eds. C. Cacciari,
& G. Clementini (Bologna, Italy), 616

Baade, W. 1926, Astronomische Nachrichten, 228, 359

Baker, N. 1960, Stellar Evolution (New York: Plenum Press)

Baker, N., & Kippenhahn, R. 1962, Zeitschrift fur Astrophysik, 54, 114

Balona, L. A. 1977, Monthly Notices of the Royal Astronomical Society, 178, 231

Barnes, T. G., Fernley, J. A., Frueh, M. L., Navas, J. G., Moffett, T. J., & Skillen, 1. 1997,
Publications of the Astronomical Society of the Pacific, 109, 645

Barnes, T. G., III; Moffett, Thomas J.; Slovak, Mark H. 1987, Astrophysical Journal
Supplement Series 65, 307

Barnes, T. G., Jefferys, W. H., Berger, J. O., Mueller, P., Orr, K., & Rodriguez, R. 2003, The
Astrophysical Journal, 592, 539

Becker, W., & Strohmeier, W. 1940, Zeitschrift fur Astrophysik, 19, 249

Belopolsky, A. 1894, Astronomische Nachrichten, 136, 281

Berdnikov, L. N., Ignatova, V. V., Pastukhova, E. N., & Turner, D. G. 1997, Astronomy
Letters, 23, 177

Berdnikov, L. N., & Pastukhova, E. N. 1995, Astronomy Letters, 21, 369

Bersier, D., Burki, G., & Burnet, M. 1994a, Astronomy and Astrophysics Supplement Series,
108, 9

Bersier, D., Burki, G., Mayor, M., & Duquennoy, A. 1994b, Astronomy & Astrophysics
Supplement Series, 108, 25

Bohm-Vitense, E. 1958, Zeitschrift fur Astrophysik, 46, 108

Bottlinger, K. F. 1928, Astronomische Nachrichten, 232, 3

Brunt, D. 1913, The Observatory, 36, 59

Burki, G. 1985. in IAU Colloquium 82 - Cepheids: Theory and Observations, Radius
Determinations for Nine Short Period Cepheids, ed. B. F. Madore (Cambridge University
Press), 34

Burki, G., & Benz, W. 1982, Astronomy and Astrophysics, 115, 30

Caccin, R., Onnembo, A., Russo, G., & Sollazzo, C. 1981, Astronomy and Astrophysics, 97,
104

Collmann, W. 1930, Astronomische Nachrichten, 238, 389

Cox, J. P. 1963, The Astrophysical Journal, 138, 487

---. 1980, Theory of Stellar Pulsation (Princeton: Princeton University Press)

---. 1985. in IAU Colloquium 82 - Cepheids: Theory and Observations, Theory of Cepheid
Pulsation: Excitation Mechanisms, ed. B. F. Madore (Cambridge University Press)

Cox, J. P., Cox, A. N,, Olsen, K. H., King, D. S., & Eilers, D. D. 1966, The Astrophysical
Journal, 144, 1038

Diethelm, R. 1983, Astronomy and Astrophysics, 124, 108



146

Dupree, R. G. 1977, The Astrophysical Journal, 211, 509

Eddington, A. S. 1917, The Observatory, 40, 290

---. 1918, Monthly Notices of the Royal Astronomical Society, 79, 2

---. 1941a, Monthly Notices of the Royal Astronomical Society, 101, 177

---. 1941b, Monthly Notices of the Royal Astronomical Society, 101, 182

---. 1942, Monthly Notices of the Royal Astronomical Society, 102, 154

Efremov, Y. N. 1968, Peremen. Zvez., 16, 365

Eggen, O. J. 1950, Astrophysical Journal, 111, 65

---. 1951, Astrophysical Journal, 113, 367

Epstein, 1. 1950, The Astrophysical Journal, 112, 6

Evans, N. R. 1985. in IAU Colloquium 82 - Cepheids: Theory and Observations, A Search
for Cepheid Binaries using the Call H and K Lines, ed. B. F. Madore (Cambridge University
Press), 79

Fernie, J. D. 1985. in IAU Colloquium 82 - Cepheids: Theory and Observations, Historical
Preface, ed. B. F. Madore (Cambridge University Press)

Fernie, J. D., & Hube, J. O. 1967, Publications of the Astronomical Society of the Pacific,
79, 467

Gautschy, A. 1987, Vistas in Astronomy, 30, 197

Gieren, W. P. 1982, Astrophysical Journal Supplement Series, 49, 1

---. 1985, Astronomy and Astrophysics, 148, 138

Gieren, W. P., Barnes, T. G., 111, & Moffett, T. J. 1989, Astrophysical Journal, 342, 467
Gieren, W. P., Fouque, P., & Gomez, M. 1. 1997, Astrophysical Journal, 488, 74
Goodricke, J. 17806, Philosophical Transactions of the Royal Society of London, 706, 48

Gray, D. F. 1992, The Observation and Analysis of Stellar Photospheres (Second Edition
ed.: Cambridge University Press)

---. 1994, Publications of the Astronomical Society of the Pacific, 106, 1248

---. 2007, Publications of the Astronomical Society of the Pacific, 119, 398

Gray, D. F., & Brown, K. 2001, Publications of the Astronomical Society of the Pacific, 113,
723

Gray, D. F., & Johanson, H. L. 1991, Publications of the Astronomical Society of the
Pacific, 103, 439

Hardie, R. H. 1962, in Stars and Stellar Systems, ed. W. A. Hiltner (Chicago: The University
of Chicago Press), 178

Haynes, E. S. 1913, Lick Observatory Bulletin, 8, 85

Khopolov, P. N, et al. 1985, General Catalogue of Variable Stars (4 ed.; Moscow)

Kiss, L. L., & Vinko, J. 2000, Monthly Notices of the Royal Astronomical Society, 304, 420
Krockenberger, M., Sasselov, D. D., & Noyes, R. W. 1997, The Astrophysical Journal, 479,
875

Kukarkin, B. V. 1975, in IPST Astrophysics Library (Keter Publishing House Jerusalem Ltd.)
Kurucz, R. L. 1979, Astrophysical Journal Supplement Series, 40, 1

Landolt, A. U. 1983, The Astronomical Journal, 88

Laney, C. D., & Stobie, R. S. 1995, Monthly Notices of the Royal Astronomical Society, 274,
337

Laney, C. D. S., R. S. 1992, Astronomy and Astrophysics Supplement Series 93

Leavitt, H. S., & Pickering, E. C. 1912, Harvard College Observatory Circular, 173, 1



147

---. 1914, Harvard College Observatory Circular, 180, 1

Madore, B. F., & Fernie, J. D. 1980, Publications of the Astronomical Society of the Pacific,
92, 315

Melissinos, A. 19606, in Experiments in Modern Physics (New York: Academic Press Inc.),
438

Merengo, M., Karovska, M., & Sasselov, D. D. 2004, The Astrophysical Journal, 603, 285
Milone, E. F. 1967, in PhD Thesis (New Haven: Yale University Observatory)

-—. 1970, Commission 27 of the IAU Information Bulletin on Variable Stars, 482, 1

Milone, E. F., Wilson, W. J. F., & Volk, K. 1999, The Astronomical Journal, 118, 3016
Moffett, T. J. 1989. in IAU Colloquium 111 - The Use of Pulsating Stars in Fundamental
Problems of Astronomy, The Baade-Wesselink Technique, ed. E. G. Schmidt (Cambridge
University Press)

Moftett, T. J., & Barnes, T. G. 1980, The Astrophysical Journal Supplement Series, 44, 427
Moro, D., & Munari, U. 2000, Astronomy & Astrophysics Supplement Series, 147, 361
Onnembo, A., Buonaura, B., Caccin, B., Russo, G., & Sollazzo, C. 1985, Astronomy and
Astrophysics, 152, 349

Platais, 1., & Mandushev, G. 1993, Journal of the American Association of Variable Star
Observers, 22, 110

Ripepi, V., Barone, F., Milano, L., & Russo, G. 1997, Astronomy and Astrophysics, 318, 797
Robinson, L. V. 1929, Harvard College Observatory Bulletin, 871

---. 1930a, Harvard College Observatory Bulletin, 876, 18

---. 1930b, Popular Astronomy, 38, 407

Rosseland, S. 1949, in The International Series of Monographs on Physics, eds. R. H.
Fowler, P. Kapitza, N. F. Mott, & E. C. Bullard (Oxford University Press)

Ruoppo, A., Ripepi, V., Marconi, M., & Russo, G. 2004, Astronomy and Astrophysics, 422,
253

Sabbey, C. N., Sasselov, D. D., Fieldus, M. S., Lester, J. B., Venn, K. A., & Butler, R. P.
1995, The Astrophysical Journal, 446, 250

Sachkov, M. E. 1997, Commissions 27 & 42 of the IAU Information Bulletin on Variable
Stars, 4522

Sanewal, B. B., & Rautela, B. S. 1989, Astrophysics and Space Science, 151, 209

Scarfe, C. D. 1976, The Astrophysical Journal, 209, 141

Schmidt, E. G. 1974, Monthly Notices of the Royal Astronomical Society, 167, 613
Schwarzschild, K. 1910, Astronomische Nachrichten, 185, 133

-—. 1911, Astronomische Nachrichten, 189, 345

Shapley, H. 1913, Astronomische Nachrichten, 194, 353

---. 1914, The Astrophysical Journal, 40, 448

---. 1916, The Astrophysical Journal, 44, 273

Simon, N. R. 1984, Astrophysical Journal, 284, 278

Szabados, L. 1977, Communications from the Konkoly Observatory, 7, 5, 1

---. 1985. in IAU Colloquium 82 - Cepheids: Theory and Observations, Duplicity Among the
Cepheids in the Northern Hemisphere, ed. B. F. Madore (Cambridge University Press), 75
---. 1991, Communications from the Konkoly Observatory, 11, 3, 123

Szabo, R., Buchler, R., & Bartee, J. 2007, The Astrophysical Journal, 667, 1150



148

Trammell, S. R. 1987, Journal of the American Association of Variable Star Observers, 10,
104

Turner, D. G. 1992, The Astronomical Journal, 104

Turner, D. G., & Burke, J. F. 2002, The Astronomical Journal, 124, 2931

Turner, D. G., Latif, M. A. S. A., & Berdnikov, L. N. 2006, Publications of the Astronomical
Society of the Pacific, 118, 410

van Hoof, A. 1943, Ciel et Terre, 59, 369

Wamsteker, W. 1972, Information Bulletin on Variable Stars, 690

Wesselink, A. F. 1946a, Bulletin of the Astronomical Institutes of the Netherlands, 10, 88

-—. 1946b, Bulletin of the Astronomical Institutes of the Netherlands, 10, 91

---. 1946c¢, Bulletin of the Astronomical Institutes of the Nethetlands, 10, 83

-—. 1947, Bulletin of the Astronomical Institutes of the Netherlands, 10, 256

Wilson, T. D., Carter, M. W., Barnes, T. G., Citters, v., Wayne, G., & Moffett, T. J. 1989,
Astrophysical Journal Supplement Series 69, 951

Young, A. T. 1994, Applied Optics, 33, 1108

Zhevakin, S. A. 1953, Astronomicheskii Zhurnal, 30, 161

---. 1963, Annual Review of Astronomy and Astrophysics, 1, 367



149

Appendix A: Heliocentric Julian Day and Radial Velocity Corrections

The following is a Matlab m-file script which can be used to convert geocentric
Julian Days to heliocentric ones, in order to standardize measurement timings to the
common frame of reference of the Sun. It is assumed the user can convert local times of
measurement to Julian times, if need be. Also computed is the associated radial velocity
correction, used to convert a geocentrically measured radial velocity to a heliocentric one,
and the airmass. The code was developed with reference to the 2005 Astronomical
Almanac. For those unfamiliar with the Matlab data analysis language, comment lines are

indicated by the ‘%’ symbol. The code begins immediately:

function result = HJDC(JD,lat,Jong,ra,dec)

% Usage: answer = HJDC(JD,lat,long,ra,dec);

% Result is returned in arbitrary "answer" variable as a nx3 row-major matrix, where

% n is number of JD input values. 1st column is Heliocentric Julian Day

% corrections, 2nd column is heliocentric radial velocity corrections, 3rd column is airmass
% Input:

% JD = full Geocentric Julian Day  day.day

% lat = latitude of observation deg.deg

% long = west longitude of observation deg.deg
% RA = right ascension of target hours.hr
% dec = declination of target deg.deg
%DEFINITIONS

vrot_eq = 465.1;

% earth equatorial rotational linear velocity in m/s, based on spherical earth using quadratic-
% mean (polar-equatorial) radius; can be improved to take into account non-sphericity and
% geographical elevations, but these are 2™ or 3™ order corrections at best.

au = 1.49597870e11;

% astronomical unit (m)

cs = 173.14463348;
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% speed of light (au/d)

% BEGINNING OF COMPUTATIONS

L = long/15;

% west longitude of observatory in hours

GMST = rem(18.697374558 + 24.06570982441908*(JD - 2451545.0),24);
% Greenwich Mean Sidereal Time at JD

LST = GMST - L;

% Local Sidereal Time at JD and longitude

ha = LST - ra;

%local hour angle of target

ha = ha*pi/12;

lat = lat*pi/180;

ra = ra*pi/12;

dec = dec*pi/180;

alt = asin(sin(lat).*sin(dec)+cos(lat). *cos(dec).*cos(ha));
zt = (pi/2 - alt); zt(zt > pi/2) = NaN;

% true zenith angle, don’t care about stuff below horizon

A = ( 1.002432%cos(zt)."2 + 0.148386*cos(zt) + 0.0096467 ) ./ (cos(zt)."3 +
0.149864%cos(zt).”2 + 0.0102963*cos(zt) + 0.000303978);

% Airmass of target: Young, A. T. 1994. Air mass and refraction. Applied
% Optics. 33:1108-1110.

n = JD-2451545.0;

% exact decimal day number from J2000.0 UT 12hr

g = rem((357.528 + .9856003.*n).*pi/180,2.*pi);

% mean anomaly, in radians, at day number n

L = rem((280.46 + .9856474.%n).*pi/180,2.*pi);

% mean longitude, in radians, at n

lam = L + 1.915.%pi/180.*sin(g) + .020.*pi/180.*sin(2.*g);
% ecliptic longitude, in radians, at n

eps = 23.439.*pi/180 - .0000004.*pi/180.*n;

% ecliptic obliquity, in radians, at n

R =1.00014 - 0.01671.*cos(g) - 0.00014.*cos(2.*g);

% distance of earth from sun in au’s at JD

X = -R.*cos(lam);

Y = -R.*cos(eps).*sin(lam);

Z = -R.*sin(eps).*sin(lam);

% rectangular coordinates of earth wrt solar system barycenter referred to equinox and
%equator of J2000.0, in au's

Xdot = .0172*sin(lam);

Ydot = -.0158.*cos(lam);

Zdot = -.0068.*cos(lam);

% first detiv's of XYZ above, wtt time in days (au/d). Note: deriv’s of XYZ w d/dt eps ~0
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rv_rot = cos(lat).*cos(dec).*sin(ha). *vrot_eq;

% rv in direction of target due to earth's rotational motion, +ve away, m/s

rv_orb = -Xdot.*cos(ra).*cos(dec) - Ydot.*sin(ra).*cos(dec) - Zdot.*sin(dec);

% rv due to earth's orbital motion, +ve away au/d

rv_orb = rv_orb.*au/86400;  %convert to m/s

RVC = rv_rot + rv_otb;

RVC = round(RVC.*¥10)/10; %trounded to 1 decimal place = 0.1 m/s.

% Radial Velocity due to earth’s rotation and orbital motion referred to barycenter, in
%direction of target, +ve away.

BJDC= 1/cs.*(X.*cos(ra).*cos(dec) + Y. *sin(ra).*cos(dec) + Z.*sin(dec));

% Barycentric Julian Day Correction. ADD this to geocentric input JD

% Otherwise known as Heliocentric JD (HJD) but there is ambiguity here.

% Difference between HJD and BJD << BJDC (~1s/~5min) in almost all cases, so only
% important for very-high precision timing

result = [BJDC(:) RVC() A()];



Appendix B: Listing of the Photometric Data

Elements for the phase calculations: Period = 3.1488d, Epoch, = HJD 2453316.5166. HJD’s below are HJD — 2453316.

HID U

Phase

du

HID B

Phase

dB

HID V

Phase

dv

HID R

Phase

dr

HID |

Phase

di

0.7207

0.0648

-0.2019

0.7211

0.0649

-0.6228

0.7277

0.0670

-0.8708

0.7218

0.0652

-1.0439

0.7285

0.0673

-1.2281

0.7209

0.0649

-0.1982

0.7212

0.0650

-0.6363

0.7279

0.0671

-0.8859

0.7281

0.0672

-1.0353

0.7287

0.0673

-1.2251

0.7269

0.0668

-0.2016

0.7274

0.0669

-0.6223

0.7598

0.0772

-0.8764

0.7283

0.0672

-1.0328

0.7606

0.0775

-1.2210

0.7271

0.0668

-0.2001

0.7275

0.0670

-0.6121

0.7600

0.0773

-0.8754

0.7602

0.0773

-1.0368

0.7608

0.0775

-1.2222

0.7590

0.0770

-0.1842

0.7594

0.0771

-0.6198

0.7705

0.0806

-0.8746

0.7604

0.0774

-1.0423

0.7713

0.0809

-1.2243

0.7592

0.0770

-0.1850

0.7596

0.0772

-0.6178

0.7707

0.0807

-0.8754

0.7709

0.0808

-1.0254

0.7715

0.0809

-1.2271

0.7698

0.0804

-0.1819

0.7701

0.0805

-0.6165

0.7804

0.0838

-0.8631

0.7711

0.0808

-1.0324

0.7813

0.0840

-1.2006

0.7699

0.0804

-0.1781

0.7703

0.0806

-0.6157

0.7806

0.0838

-0.8674

0.7808

0.0839

-1.0125

0.7814

0.0841

-1.2004

0.7797

0.0835

-0.1735

0.7801

0.0837

-0.6147

0.7949

0.0884

-0.8699

0.7810

0.0840

-1.0100

0.7956

0.0886

-1.2157

0.7942

0.0881

-0.1652

0.7802

0.0837

-0.6176

0.7950

0.0884

-0.8685

0.7952

0.0885

-1.0161

0.7958

0.0887

-1.2153

0.7943

0.0882

-0.1719

0.7945

0.0882

-0.6034

0.8022

0.0907

-0.8692

0.7954

0.0885

-1.0170

0.8029

0.0909

-1.2177

0.8014

0.0904

-0.1711

0.7947

0.0883

-0.6012

0.8024

0.0908

-0.8669

0.8026

0.0908

-1.0283

0.8031

0.0910

-1.2228

0.8015

0.0905

-0.1654

0.8017

0.0905

-0.6111

0.8136

0.0943

-0.8623

0.8028

0.0909

-1.0221

0.8143

0.0945

-1.2126

0.8129

0.0941

-0.1616

0.8019

0.0906

-0.6098

0.8138

0.0944

-0.8642

0.8139

0.0944

-1.0147

0.8144

0.0946

-1.2072

0.8131

0.0941

-0.1629

0.8020

0.0906

-0.6121

0.8205

0.0965

-0.8671

0.8209

0.0966

-1.0169

0.8212

0.0967

-1.2210

0.8198

0.0963

-0.1607

0.8132

0.0942

-0.6007

0.8207

0.0966

-0.8619

0.8211

0.0967

-1.0211

0.8214

0.0968

-1.2189

0.8200

0.0963

-0.1609

0.8134

0.0942

-0.6041

0.8320

0.1001

-0.8541

0.8323

0.1002

-1.0152

0.8326

0.1004

-1.2103
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0.8312

0.0999

-0.1610

0.8202

0.0964

-0.6055

0.8321

0.1002

-0.8553

0.8325

0.1003

-1.0168

0.8328

0.1004

-1.2115

0.8314

0.1000

-0.1535

0.8316

0.1000

-0.5946

0.8433

0.1037

-0.8467

0.8436

0.1038

-1.0015

0.8440

0.1040

-1.1909

0.8425

0.1035

-0.1570

0.8318

0.1001

-0.5949

0.8434

0.1038

-0.8428

0.8438

0.1039

-0.9996

0.8441

0.1040

-1.1894

0.8427

0.1036

-0.1465

0.8429

0.1036

-0.5869

0.8615

0.1095

-0.8524

0.8619

0.1096

-1.0059

0.8622

0.1097

-1.1985

0.8606

0.1092

-0.1390

0.8431

0.1037

-0.5877

0.8617

0.1096

-0.8485

0.8620

0.1097

-1.0059

0.8624

0.1098

-1.1979

0.8608

0.1093

-0.1355

0.8610

0.1094

-0.5835

0.8797

0.1153

-0.8536

0.8801

0.1154

-0.9959

0.8690

0.1119

-1.1749

0.8675

0.1114

-0.1199

0.8612

0.1094

-0.5853

0.8799

0.1154

-0.8583

0.8803

0.1155

-0.9902

0.8692

0.1120

-1.1755

0.8677

0.1115

-0.1221

0.8794

0.1152

-0.5869

0.9264

0.1301

-0.8117

0.9266

0.1302

-0.9790

0.8805

0.1156

-1.1894

0.8790

0.1151

-0.1233

0.8796

0.1153

-0.5886

0.9338

0.1325

-0.8237

0.9267

0.1302

-0.9746

0.8807

0.1156

-1.1828

0.8792

0.1151

-0.1243

0.8869

0.1176

-0.5615

0.9340

0.1325

-0.8239

0.9342

0.1326

-0.9864

0.8879

0.1179

-1.1797

0.8865

0.1175

-0.1216

0.8870

0.1176

-0.5602

0.9460

0.1364

-0.8351

0.9343

0.1327

-0.9856

0.8881

0.1180

-1.1873

0.8867

0.1175

-0.1141

0.9259

0.1300

-0.5475

0.9461

0.1364

-0.8288

0.9463

0.1365

-0.9994

0.8883

0.1180

-1.1784

0.9255

0.1299

-0.1006

0.9260

0.1300

-0.5458

0.9648

0.1423

-0.8111

0.9465

0.1365

-0.9990

0.9269

0.1303

-1.1775

0.9257

0.1299

-0.1004

0.9335

0.1324

-0.5480

0.9650

0.1424

-0.8127

0.9531

0.1386

-0.9636

0.9271

0.1304

-1.1804

0.9331

0.1323

-0.0978

0.9336

0.1324

-0.5454

0.9724

0.1448

-0.8197

0.9533

0.1387

-0.9618

0.9345

0.1327

-1.1863

0.9333

0.1323

-0.0983

0.9456

0.1362

-0.5564

0.9726

0.1448

-0.8202

0.9652

0.1424

-0.9786

0.9347

0.1328

-1.1838

0.9453

0.1361

-0.1077

0.9458

0.1363

-0.5533

0.9954

0.1520

-0.8035

0.9653

0.1425

-0.9820

0.9467

0.1366

-1.1981

0.9455

0.1362

-0.0986

0.9524

0.1384

-0.5425

0.9956

0.1521

-0.8101

0.9655

0.1426

-0.9806

0.9468

0.1366

-1.1962

0.9521

0.1383

-0.0913

0.9526

0.1384

-0.5295

1.0021

0.1542

-0.7976

0.9728

0.1449

-0.9903

0.9535

0.1387

-1.1738

0.9522

0.1383

-0.0907

0.9643

0.1422

-0.5423

1.0148

0.1582

-0.8170

0.9729

0.1449

-0.9925

0.9537

0.1388

-1.1713

0.9640

0.1421

-0.0778

0.9645

0.1422

-0.5451

1.0150

0.1583

-0.8170

0.9957

0.1522

-0.9750

0.9657

0.1426

-1.1805

0.9641

0.1421

-0.0832

0.9646

0.1423

-0.5358

1.0222

0.1606

-0.8085

0.9959

0.1522

-0.9766

0.9659

0.1427

-1.1789

0.9718

0.1445

-0.0898

0.9721

0.1446

-0.5377

1.0223

0.1606

-0.8071

1.0025

0.1543

-0.9676

0.9731

0.1450

-1.1930

0.9719

0.1446

-0.0795

0.9722

0.1447

-0.5390

3.7220

0.0179

-0.8790

1.0152

0.1583

-0.9749

0.9733

0.1450

-1.1930

0.9947

0.1518

-0.0678

0.9951

0.1519

-0.5236

3.7279

0.0198

-0.8918

3.7217

0.0179

-1.0255

0.9961

0.1523

-1.1816

0.9949

0.1519

-0.0796

1.0016

0.1540

-0.5264

3.7291

0.0202

-0.8798

3.7277

0.0198

-1.0367

0.9962

0.1523

-1.1799
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1.0013

0.1539

-0.0758

1.0018

0.1541

-0.5095

3.7355

0.0222

-0.8802

3.7293

0.0203

-1.0300

1.0028

0.1544

-1.1698

1.0015

0.1540

-0.0754

1.0020

0.1541

-0.5046

3.7405

0.0238

-0.8899

3.7353

0.0222

-1.0281

1.0029

0.1544

-1.1770

1.0141

0.1580

-0.0666

1.0145

0.1581

-0.5319

3.7415

0.0241

-0.8811

3.7403

0.0238

-1.0376

1.0155

0.1584

-1.1821

1.0143

0.1580

-0.0622

1.0146

0.1582

-0.5276

3.7524

0.0276

-0.8819

3.7416

0.0242

-1.0242

1.0157

0.1585

-1.1814

1.0215

0.1603

-0.0529

1.0219

0.1605

-0.5244

3.7533

0.0279

-0.8806

3.7522

0.0276

-1.0311

1.0229

0.1608

-1.1923

1.0217

0.1604

-0.0547

1.0220

0.1605

-0.5163

3.7663

0.0320

-0.8800

3.7535

0.0280

-1.0289

1.0230

0.1608

-1.1971

3.7226

0.0181

-0.2377

3.7222

0.0180

-0.6468

3.8072

0.0450

-0.8916

3.7666

0.0321

-1.0191

3.7215

0.0178

-1.2218

3.7283

0.0200

-0.2404

3.7228

0.0182

-0.6371

3.8073

0.0451

-0.8914

3.8143

0.0473

-1.0467

3.7275

0.0197

-1.2187

3.7287

0.0201

-0.2420

3.7281

0.0199

-0.6528

3.8139

0.0471

-0.8886

3.8144

0.0473

-1.0470

3.7295

0.0203

-1.2102

3.7359

0.0224

-0.2387

3.7289

0.0201

-0.6454

3.8140

0.0472

-0.8908

3.8314

0.0527

-1.0253

3.7351

0.0221

-1.2014

3.7361

0.0224

-0.2177

3.7357

0.0223

-0.6434

3.8310

0.0526

-0.8766

3.8316

0.0528

-1.0354

3.7401

0.0237

-1.2177

3.7409

0.0240

-0.2306

3.7407

0.0239

-0.6505

3.8312

0.0526

-0.8822

3.8407

0.0557

-1.0292

3.7419

0.0243

-1.2088

3.7411

0.0240

-0.2293

3.7413

0.0241

-0.6511

3.8403

0.0555

-0.8813

3.8408

0.0557

-1.0320

3.7520

0.0275

-1.2170

3.7528

0.0277

-0.2288

3.7526

0.0277

-0.6462

3.8405

0.0556

-0.8838

3.8455

0.0572

-1.0340

3.7537

0.0280

-1.2130

3.7530

0.0278

-0.2211

3.7531

0.0278

-0.6443

3.8450

0.0570

-0.8823

3.8496

0.0585

-1.0296

3.7668

0.0322

-1.2105

3.7660

0.0319

-0.2133

3.7662

0.0320

-0.6440

3.8492

0.0584

-0.8789

3.8498

0.0585

-1.0251

3.8318

0.0528

-1.2226

3.7670

0.0323

-0.2181

3.7672

0.0323

-0.6340

3.8494

0.0584

-0.8729

4.0138

0.1106

-1.0055

3.8320

0.0529

-1.2238

3.8064

0.0448

-0.2019

3.8068

0.0449

-0.6359

4.0134

0.1105

-0.8489

4.0139

0.1107

-1.0037

3.8411

0.0558

-1.2151

3.8066

0.0448

-0.2049

3.8070

0.0449

-0.6372

4.0135

0.1106

-0.8487

4.0190

0.1123

-1.0068

3.8412

0.0558

-1.2140

3.8131

0.0469

-0.2000

3.8135

0.0470

-0.6425

4.0186

0.1121

-0.8530

4.0192

0.1123

-1.0085

3.8456

0.0572

-1.2222

3.8132

0.0469

-0.2022

3.8137

0.0471

-0.6451

4.0187

0.1122

-0.8488

4.6875

0.3246

-0.8532

3.8458

0.0573

-1.2257

3.8302

0.0523

-0.2041

3.8306

0.0525

-0.6160

4.0231

0.1136

-0.8495

4.6877

0.3246

-0.8421

4.0141

0.1107

-1.1990

3.8304

0.0524

-0.2033

3.8308

0.0525

-0.6236

4.0233

0.1137

-0.8460

4.6922

0.3261

-0.8424

4.0143

0.1108

-1.1991

3.8395

0.0553

-0.1990

3.8399

0.0554

-0.6303

4.0281

0.1152

-0.8419

4.6923

0.3261

-0.8430

4.0194

0.1124

-1.1988

3.8397

0.0553

-0.1978

3.8401

0.0555

-0.6380

4.6872

0.3245

-0.6397

4.7060

0.3305

-0.8496

4.0196

0.1125

-1.1844

3.8442

0.0568

-0.1933

3.8446

0.0569

-0.6374

4.6873

0.3245

-0.6438

4.7061

0.3305

-0.8382

4.0239

0.1138

-1.2130
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3.8444

0.0568

-0.1921

3.8447

0.0569

-0.6336

4.6918

0.3260

-0.6578

4.7108

0.3320

-0.8372

4.0240

0.1139

-1.2129

3.8484

0.0581

-0.1825

3.8488

0.0582

-0.6339

4.6920

0.3260

-0.6594

4.7109

0.3320

-0.8405

4.6879

0.3247

-1.0803

4.0126

0.1103

-0.1533

3.8490

0.0583

-0.6242

4.7051

0.3302

-0.6292

4.7238

0.3361

-0.8446

4.6880

0.3248

-1.0826

4.0178

0.1119

-0.1412

4.0130

0.1104

-0.5778

4.7058

0.3304

-0.6474

4.7310

0.3384

-0.8415

4.6925

0.3262

-1.0752

4.0180

0.1120

-0.1381

4.0132

0.1104

-0.5814

4.7102

0.3318

-0.6408

4.7311

0.3384

-0.8409

4.6927

0.3262

-1.0940

4.0224

0.1134

-0.1467

4.0182

0.1120

-0.5827

4.7106

0.3319

-0.6360

4.7366

0.3402

-0.8385

4.7063

0.3306

-1.0881

4.0226

0.1134

-0.1439

4.0184

0.1121

-0.5839

4.7234

0.3360

-0.6379

4.7488

0.3441

-0.8354

4.7065

0.3306

-1.0869

4.0273

0.1149

-0.1326

4.0228

0.1135

-0.5788

4.7236

0.3361

-0.6394

4.7490

0.3441

-0.8209

4.7111

0.3321

-1.0941

4.0275

0.1150

-0.1222

4.0229

0.1135

-0.5799

4.7306

0.3383

-0.6369

4.7538

0.3457

-0.8399

4.7113

0.3321

-1.0901

4.6865

0.3243

0.2418

4.0277

0.1151

-0.5729

4.7308

0.3383

-0.6402

4.7656

0.3494

-0.8366

4.7315

0.3386

-1.0720

4.6912

0.3258

0.2302

4.0279

0.1151

-0.5669

4.7362

0.3401

-0.6345

4.7657

0.3494

-0.8380

4.7316

0.3386

-1.0726

4.6913

0.3258

0.2391

4.6870

0.3244

-0.2572

4.7364

0.3401

-0.6376

4.7825

0.3548

-0.8260

4.7371

0.3403

-1.0736

4.7044

0.3300

0.2422

4.6915

0.3259

-0.2754

4.7485

0.3440

-0.6224

4.7826

0.3548

-0.8234

4.7373

0.3404

-1.0750

4.7046

0.3300

0.2596

4.6917

0.3259

-0.2701

4.7487

0.3440

-0.6319

4.7893

0.3569

-0.8263

4.7494

0.3442

-1.0650

4.7096

0.3316

0.2427

4.7048

0.3301

-0.2594

4.7534

0.3455

-0.6299

4.7895

0.3570

-0.8213

4.7495

0.3443

-1.0630

4.7097

0.3316

0.2441

4.7099

0.3317

-0.2714

4.7536

0.3456

-0.6299

4.8285

0.3694

-0.8222

4.7543

0.3458

-1.0710

4.7223

0.3356

0.2521

4.7101

0.3317

-0.2780

4.7652

0.3493

-0.6298

4.8286

0.3694

-0.8215

4.7545

0.3459

-1.0747

4.7225

0.3357

0.2439

4.7228

0.3358

-0.2544

4.7654

0.3493

-0.6306

4.8352

0.3715

-0.8162

4.7660

0.3495

-1.0619

4.7296

0.3380

0.2589

4.7300

0.3381

-0.2552

4.7821

0.3546

-0.6212

4.8354

0.3716

-0.8063

4.7662

0.3496

-1.0682

4.7298

0.3380

0.2596

4.7301

0.3381

-0.2540

4.7823

0.3547

-0.6220

4.8557

0.3780

-0.8158

4.7830

0.3549

-1.0633

4.7354

0.3398

0.2637

4.7357

0.3399

-0.2542

4.7890

0.3568

-0.6212

4.8558

0.3780

-0.8172

4.7831

0.3550

-1.0618

4.7355

0.3398

0.2579

4.7359

0.3399

-0.2552

4.7892

0.3569

-0.6208

4.8718

0.3831

-0.8157

4.7900

0.3571

-1.0675

4.7476

0.3437

0.2658

4.7479

0.3438

-0.2516

4.8281

0.3692

-0.6116

4.8720

0.3832

-0.8152

4.7901

0.3572

-1.0691

4.7478

0.3437

0.2706

4.7481

0.3438

-0.2466

4.8283

0.3693

-0.6160

4.8786

0.3853

-0.8102

4.8289

0.3695

-1.0628

4.7525

0.3452

0.2665

4.7528

0.3453

-0.2479

4.8349

0.3714

-0.6099

4.8788

0.3853

-0.8120

4.8291

0.3696

-1.0597

4.7527

0.3453

0.2692

4.7530

0.3454

-0.2452

4.8351

0.3714

-0.6131

4.8937

0.3901

-0.8064

4.8357

0.3717

-1.0564
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4.7644

0.3490

0.2632

4.7647

0.3491

-0.2468

4.8485

0.3757

-0.6082

4.8938

0.3901

-0.8065

4.8359

0.3717

-1.0551

4.7645

0.3491

0.2692

4.7649

0.3492

-0.2477

4.8487

0.3758

-0.6126

4.9008

0.3923

-0.7961

4.8494

0.3760

-1.0563

4.7813

0.3544

0.2833

4.7817

0.3545

-0.2493

4.8553

0.3779

-0.6043

4.9010

0.3924

-0.7963

4.8495

0.3760

-1.0535

4.7815

0.3544

0.2718

4.7818

0.3545

-0.2487

4.8555

0.3779

-0.6063

4.9261

0.4004

-0.8126

4.8561

0.3781

-1.0540

4.7882

0.3566

0.2814

4.7885

0.3567

-0.2375

4.8714

0.3830

-0.6046

4.9263

0.4004

-0.8158

4.8563

0.3782

-1.0566

4.7883

0.3566

0.2800

4.7887

0.3567

-0.2332

4.8716

0.3831

-0.6067

49331

0.4026

-0.8033

4.8723

0.3833

-1.0523

4.8272

0.3690

0.2988

4.8276

0.3691

-0.2334

4.8783

0.3852

-0.6075

4.9333

0.4026

-0.8058

4.8724

0.3833

-1.0538

4.8274

0.3690

0.2988

4.8278

0.3691

-0.2327

4.8784

0.3852

-0.6076

4.9489

0.4076

-0.8013

4.8791

0.3854

-1.0525

4.8340

0.3711

0.3022

4.8344

0.3712

-0.2304

4.8933

0.3900

-0.5972

4.9490

0.4076

-0.8030

4.8793

0.3855

-1.0523

4.8342

0.3712

0.3095

4.8345

0.3713

-0.2295

4.8935

0.3900

-0.5999

4.9569

0.4101

-0.7916

4.8942

0.3902

-1.0498

4.8476

0.3754

0.3074

4.8479

0.3755

-0.2183

4.9004

0.3922

-0.5986

5.8735

0.7012

-0.8568

4.8943

0.3903

-1.0444

4.8478

0.3755

0.3180

4.8481

0.3756

-0.2210

4.9006

0.3923

-0.5954

5.8737

0.7013

-0.8565

4.9014

0.3925

-1.0461

4.8545

0.3776

0.3096

4.8548

0.3777

-0.2198

4.9258

0.4003

-0.5923

5.8792

0.7030

-0.8583

4.9016

0.3926

-1.0492

4.8547

0.3777

0.3094

4.8709

0.3828

-0.2150

4.9259

0.4003

-0.5909

5.8794

0.7031

-0.8543

4.9267

0.4005

-1.0396

4.8705

0.3827

0.3158

4.8710

0.3829

-0.2155

4.9328

0.4025

-0.5903

6.6917

0.9611

-1.0279

4.9268

0.4006

-1.0424

4.8707

0.3828

0.3174

4.8778

0.3850

-0.2116

4.9330

0.4025

-0.5892

6.6919

0.9611

-1.0363

4.9336

0.4027

-1.0420

4.8775

0.3849

0.3199

4.8780

0.3851

-0.2100

4.9485

0.4075

-0.5936

6.6968

0.9627

-1.0403

4.9338

0.4028

-1.0409

4.8776

0.3850

0.3169

4.8928

0.3898

-0.2060

4.9487

0.4075

-0.5963

6.6970

0.9628

-1.0331

4.9493

0.4077

-1.0524

4.8924

0.3897

0.3263

4.8929

0.3898

-0.2027

4.9565

0.4100

-0.5851

6.7017

0.9642

-1.0241

4.9495

0.4078

-1.0447

4.8926

0.3897

0.3304

4.8999

0.3920

-0.2109

4.9567

0.4101

-0.5869

6.7018

0.9643

-1.0290

4.9575

0.4103

-1.0378

4.8996

0.3919

0.3251

4.9001

0.3921

-0.2063

5.8731

0.7011

-0.6681

6.7158

0.9687

-1.0346

4.9576

0.4104

-1.0398

4.8997

0.3920

0.3233

4.9253

0.4001

-0.2005

5.8733

0.7012

-0.6686

6.7160

0.9688

-1.0331

5.8742

0.7014

-1.0781

4.9250

0.4000

0.3310

4.9255

0.4002

-0.2009

5.8788

0.7029

-0.6716

6.7205

0.9702

-1.0234

5.8743

0.7015

-1.0817

49251

0.4001

0.3345

4.9323

0.4023

-0.1987

5.8790

0.7030

-0.6729

6.7207

0.9703

-1.0241

5.8799

0.7033

-1.0694

4.9319

0.4022

0.3331

4.9324

0.4024

-0.2021

5.8844

0.7047

-0.6709

6.7255

0.9718

-1.0197

5.8801

0.7033

-1.0742

49321

0.4023

0.3364

4.9479

0.4073

-0.1897

5.8957

0.7083

-0.6775

6.7426

0.9773

-1.0256

5.8854

0.7050

-1.0784
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4.9475

0.4072

0.3355

4.9480

0.4073

-0.1884

5.8959

0.7084

-0.6811

6.7428

0.9773

-1.0288

5.8856

0.7051

-1.0765

4.9477

0.4072

0.3428

4.9557

0.4098

-0.1829

6.6964

0.9626

-0.8811

6.7474

0.9788

-1.0294

6.6922

0.9613

-1.2017

4.9554

0.4097

0.3446

5.8783

0.7027

-0.3580

6.6966

0.9626

-0.8905

6.7475

0.9788

-1.0196

6.6924

0.9613

-1.2184

4.9556

0.4097

0.3389

5.8784

0.7028

-0.3542

6.7013

0.9641

-0.8849

6.7521

0.9803

-1.0254

6.6975

0.9629

-1.2157

5.8779

0.7026

0.1099

5.8838

0.7045

-0.3539

6.7155

0.9686

-0.8802

6.7523

0.9803

-1.0216

6.7022

0.9644

-1.2183

5.8781

0.7027

0.1135

5.8840

0.7046

-0.3493

6.7156

0.9687

-0.8868

6.7674

0.9851

-1.0372

6.7024

0.9645

-1.2067

5.8834

0.7044

0.1116

5.8952

0.7081

-0.3286

6.7202

0.9701

-0.8822

6.7676

0.9852

-1.0293

6.7164

0.9689

-1.2223

5.8836

0.7045

0.1039

6.6959

0.9624

-0.6373

6.7204

0.9702

-0.8945

6.7723

0.9867

-1.0262

6.7165

0.9690

-1.2205

5.8948

0.7080

0.0946

6.7008

0.9640

-0.6414

6.7249

0.9716

-0.8858

6.7725

0.9867

-1.0235

6.7210

0.9704

-1.2079

5.8950

0.7081

0.1041

6.7010

0.9640

-0.6403

6.7423

0.9771

-0.8872

6.7771

0.9882

-1.0277

6.7212

0.9705

-1.2119

6.6904

0.9607

-0.2322

6.7149

0.9685

-0.6520

6.7425

0.9772

-0.8878

6.7773

0.9883

-1.0370

6.7258

0.9719

-1.2133

6.6906

0.9607

-0.2284

6.7151

0.9685

-0.6569

6.7470

0.9786

-0.8790

6.7985

0.9950

-1.0310

6.7260

0.9720

-1.2128

6.6957

0.9624

-0.2478

6.7197

0.9700

-0.6490

6.7472

0.9787

-0.8790

6.7986

0.9950

-1.0317

6.7432

0.9774

-1.2160

6.7005

0.9639

-0.2319

6.7199

0.9700

-0.6435

6.7518

0.9802

-0.8794

6.8116

0.9992

-1.0354

6.7433

0.9775

-1.2183

6.7007

0.9639

-0.2187

6.7418

0.9770

-0.6578

6.7520

0.9802

-0.8811

6.8118

0.9992

-1.0311

6.7479

0.9789

-1.2121

6.7147

0.9684

-0.2393

6.7419

0.9770

-0.6504

6.7671

0.9850

-0.8899

6.8163

0.0007

-1.0416

6.7481

0.9790

-1.2212

6.7193

0.9699

-0.2100

6.7465

0.9785

-0.6474

6.7673

0.9851

-0.9005

6.8165

0.0007

-1.0446

6.7527

0.9804

-1.2142

6.7195

0.9699

-0.2219

6.7467

0.9785

-0.6509

6.7720

0.9866

-0.8770

6.8417

0.0087

-1.0243

6.7528

0.9805

-1.2232

6.7240

0.9714

-0.2192

6.7513

0.9800

-0.6555

6.7721

0.9866

-0.8777

6.8447

0.0097

-1.0375

6.7679

0.9853

-1.2152

6.7242

0.9714

-0.2167

6.7515

0.9801

-0.6558

6.7768

0.9881

-0.8949

6.8477

0.0106

-1.0430

6.7681

0.9853

-1.2240

6.7414

0.9769

-0.2334

6.7666

0.9849

-0.6571

6.7770

0.9882

-0.8974

6.8500

0.0113

-1.0411

6.7728

0.9868

-1.2067

6.7416

0.9769

-0.2303

6.7668

0.9849

-0.6541

6.7932

0.9933

-0.8821

6.8530

0.0123

-1.0353

6.7730

0.9869

-1.2050

6.7462

0.9784

-0.2246

6.7715

0.9864

-0.6633

6.7934

0.9934

-0.8808

8.6940

0.5970

-0.7799

6.7776

0.9884

-1.2189

6.7463

0.9784

-0.2191

6.7717

0.9865

-0.6501

6.7981

0.9949

-0.8830

8.6942

0.5970

-0.7765

6.7778

0.9884

-1.2215

6.7509

0.9799

-0.2288

6.7880

0.9917

-0.6455

6.7983

0.9949

-0.8856

8.8525

0.6473

-0.8043

6.7894

0.9921

-1.2156

6.7511

0.9800

-0.2190

6.7976

0.9947

-0.6493

6.8112

0.9990

-0.8801

8.8527

0.6474

-0.8082

6.7896

0.9922

-1.2217
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6.7663

0.9848

-0.2231

6.7978

0.9948

-0.6525

6.8114

0.9991

-0.8879

8.8565

0.6486

-0.8133

6.7941

0.9936

-1.2191

6.7664

0.9848

-0.2192

6.8107

0.9989

-0.6471

6.8159

0.0005

-0.8966

8.8567

0.6487

-0.8044

6.7943

0.9937

-1.2185

6.7713

0.9864

-0.2242

6.8109

0.9989

-0.6457

6.8161

0.0006

-0.8961

8.8609

0.6500

-0.8021

6.7990

0.9951

-1.2074

6.7759

0.9878

-0.2353

6.8202

0.0019

-0.6479

6.8415

0.0087

-0.8921

8.8611

0.6500

-0.8089

6.7991

0.9952

-1.2111

6.7761

0.9879

-0.2443

6.8437

0.0094

-0.6509

6.8446

0.0096

-0.8902

8.8714

0.6533

-0.8261

6.8121

0.9993

-1.2200

6.7877

0.9916

-0.2303

6.8467

0.0103

-0.6493

6.8469

0.0104

-0.8828

8.8715

0.6534

-0.8130

6.8122

0.9994

-1.2060

6.7878

0.9916

-0.2274

6.8490

0.0110

-0.6440

6.8498

0.0113

-0.8807

8.8759

0.6547

-0.8097

6.8168

0.0008

-1.2239

6.7973

0.9946

-0.2276

6.8519

0.0120

-0.6473

6.8521

0.0120

-0.8940

8.8801

0.6561

-0.8154

6.8170

0.0009

-1.2226

6.7974

0.9947

-0.2215

8.6935

0.5968

-0.1942

6.8618

0.0151

-0.8982

8.8906

0.6594

-0.8104

6.8426

0.0090

-1.2346

6.8104

0.9988

-0.2148

8.8517

0.6471

-0.2620

8.6937

0.5969

-0.5706

8.8974

0.6616

-0.8359

6.8456

0.0099

-1.2190

6.8106

0.9988

-0.2109

8.8519

0.6471

-0.2792

8.6938

0.5969

-0.5840

8.8975

0.6616

-0.8275

6.8479

0.0107

-1.2220

6.8151

0.0003

-0.2510

8.8559

0.6484

-0.2635

8.8520

0.6472

-0.6179

8.9017

0.6630

-0.8301

6.8508

0.0116

-1.2248

6.8153

0.0003

-0.2486

8.8560

0.6484

-0.2657

8.8522

0.6472

-0.6236

8.9019

0.6630

-0.8236

6.8532

0.0124

-1.2256

6.8198

0.0018

-0.2503

8.8601

0.6497

-0.2664

8.8562

0.6485

-0.6107

8.9132

0.6666

-0.8256

8.6943

0.5971

-1.0195

6.8200

0.0018

-0.2447

8.8603

0.6498

-0.2565

8.8564

0.6485

-0.6128

8.9172

0.6679

-0.8223

8.6945

0.5971

-1.0132

6.8404

0.0083

-0.2326

8.8705

0.6530

-0.2655

8.8605

0.6498

-0.6133

8.9174

0.6679

-0.8280

8.8529

0.6474

-1.0369

6.8458

0.0100

-0.2304

8.8707

0.6531

-0.2745

8.8606

0.6499

-0.6158

8.9214

0.6692

-0.8369

8.8530

0.6475

-1.0452

6.8488

0.0110

-0.2190

8.8749

0.6544

-0.2616

8.8709

0.6531

-0.6227

8.9216

0.6693

-0.8252

8.8569

0.6487

-1.0341

6.8511

0.0117

-0.2179

8.8751

0.6545

-0.2745

8.8710

0.6532

-0.6235

8.9322

0.6726

-0.8321

8.8570

0.6488

-1.0305

6.8605

0.0147

-0.2320

8.8792

0.6558

-0.2751

8.8753

0.6545

-0.6155

8.9324

0.6727

-0.8315

8.8613

0.6501

-1.0384

8.6931

0.5967

0.3244

8.8898

0.6592

-0.2854

8.8754

0.6546

-0.6328

8.9365

0.6740

-0.8492

8.8717

0.6534

-1.0398

8.8514

0.6469

0.2243

8.8965

0.6613

-0.2891

8.8796

0.6559

-0.6247

8.9367

0.6741

-0.8323

8.8719

0.6535

-1.0341

8.8555

0.6483

0.2208

8.8967

0.6613

-0.2870

8.8798

0.6560

-0.6156

8.9412

0.6755

-0.8357

8.8761

0.6548

-1.0417

8.8557

0.6483

0.2320

8.9009

0.6627

-0.2909

8.8902

0.6593

-0.6317

8.9414

0.6755

-0.8523

8.8762

0.6549

-1.0458

8.8598

0.6496

0.2331

8.9011

0.6627

-0.2969

8.8904

0.6593

-0.6247

8.9525

0.6791

-0.8380

8.8804

0.6562

-1.0378

8.8600

0.6497

0.2124

8.9122

0.6663

-0.2850

8.8968

0.6614

-0.6445

8.9526

0.6791

-0.8222

8.8806

0.6562

-1.0414
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8.8702

0.6529

0.2145

8.9123

0.6663

-0.2750

8.8970

0.6614

-0.6395

8.9568

0.6804

-0.8497

8.8911

0.6596

-1.0545

8.8704

0.6530

0.2171

8.9164

0.6676

-0.2919

8.9014

0.6629

-0.6292

8.9570

0.6805

-0.8413

8.8912

0.6596

-1.0500

8.8746

0.6543

0.2058

8.9166

0.6677

-0.2743

8.9125

0.6664

-0.6456

8.9571

0.6805

-0.8275

8.8977

0.6617

-1.0408

8.8747

0.6544

0.2153

8.9207

0.6690

-0.2959

8.9127

0.6664

-0.6290

8.9612

0.6818

-0.8237

8.8979

0.6617

-1.0428

8.8789

0.6557

0.1851

8.9208

0.6690

-0.2867

8.9167

0.6677

-0.6350

8.9613

0.6819

-0.8323

8.9021

0.6631

-1.0550

8.8791

0.6557

0.2146

8.9314

0.6724

-0.2950

8.9169

0.6678

-0.6271

8.9726

0.6855

-0.8385

8.9022

0.6631

-1.0437

8.8895

0.6591

0.2074

8.9316

0.6724

-0.2853

8.9210

0.6691

-0.6255

8.9728

0.6855

-0.8463

8.9133

0.6666

-1.0526

8.8897

0.6591

0.1869

8.9357

0.6737

-0.2903

8.9212

0.6691

-0.6288

8.9769

0.6868

-0.8514

8.9135

0.6667

-1.0387

8.8962

0.6612

0.2099

8.9359

0.6738

-0.3010

8.9317

0.6725

-0.6421

8.9770

0.6869

-0.8400

8.9176

0.6680

-1.0511

8.8963

0.6612

0.2124

8.9400

0.6751

-0.3206

8.9319

0.6725

-0.6454

8.9817

0.6884

-0.8461

8.9177

0.6680

-1.0371

8.9006

0.6626

0.1905

8.9402

0.6752

-0.3048

8.9361

0.6738

-0.6316

9.7115

0.9201

-1.0228

8.9218

0.6693

-1.0455

8.9008

0.6626

0.2107

8.9403

0.6752

-0.2895

8.9362

0.6739

-0.6385

9.7117

0.9202

-1.0159

8.9220

0.6694

-1.0585

8.9118

0.6662

0.1778

8.9516

0.6788

-0.3191

8.9405

0.6753

-0.6379

9.7159

0.9215

-1.0224

8.9326

0.6727

-1.0723

8.9120

0.6662

0.1855

8.9518

0.6788

-0.3111

8.9407

0.6753

-0.6442

9.7161

0.9216

-1.0180

8.9327

0.6728

-1.0770

8.9161

0.6675

0.1970

8.9560

0.6802

-0.3316

8.9408

0.6754

-0.6313

9.7202

0.9229

-1.0083

8.9369

0.6741

-1.0341

8.9162

0.6675

0.1870

8.9562

0.6802

-0.2954

8.9520

0.6789

-0.6520

9.7204

0.9229

-1.0146

8.9370

0.6742

-1.0598

8.9203

0.6688

0.1821

8.9603

0.6816

-0.3194

8.9521

0.6790

-0.6497

9.7730

0.9396

-1.0255

8.9415

0.6756

-1.0645

8.9205

0.6689

0.1666

8.9605

0.6816

-0.2943

8.9563

0.6803

-0.6511

9.7731

0.9397

-1.0294

8.9417

0.6756

-1.0445

8.9310

0.6723

0.1592

8.9718

0.6852

-0.3318

8.9565

0.6803

-0.6418

9.7773

0.9410

-1.0208

8.9528

0.6792

-1.0811

8.9312

0.6723

0.1836

8.9720

0.6853

-0.3396

8.9607

0.6817

-0.6522

9.7774

0.9411

-1.0236

8.9530

0.6792

-1.0515

8.9354

0.6736

0.1664

8.9760

0.6865

-0.3221

8.9608

0.6817

-0.6299

9.7817

0.9424

-1.0227

8.9573

0.6806

-1.0508

8.9355

0.6737

0.1749

8.9762

0.6866

-0.3049

8.9722

0.6853

-0.6546

9.7819

0.9425

-1.0217

8.9575

0.6807

-1.0590

8.9397

0.6750

0.1701

8.9808

0.6880

-0.3285

8.9723

0.6854

-0.6666

9.7923

0.9458

-1.0310

8.9615

0.6819

-1.0739

8.9399

0.6751

0.1769

8.9809

0.6881

-0.3093

8.9811

0.6882

-0.6513

9.7924

0.9458

-1.0310

8.9617

0.6820

-1.0607

8.9513

0.6787

0.1701

9.7107

0.9198

-0.6435

8.9813

0.6882

-0.6556

9.7964

0.9471

-1.0316

8.9730

0.6856

-1.0504

8.9514

0.6787

0.1433

9.7108

0.9199

-0.6402

9.7110

0.9200

-0.8677

9.7966

0.9471

-1.0300

8.9731

0.6856

-1.0611
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8.9557

0.6801

0.1452

9.7151

0.9213

-0.6316

9.7112

0.9200

-0.8577

9.8006

0.9484

-1.0257

8.9772

0.6869

-1.0588

8.9558

0.6801

0.1520

9.7153

0.9213

-0.6493

9.7155

0.9214

-0.8806

9.8008

0.9485

-1.0310

8.9774

0.6870

-1.0438

8.9600

0.6814

0.1426

9.7193

0.9226

-0.6504

9.7156

0.9214

-0.8661

9.8118

0.9520

-1.0309

8.9819

0.6884

-1.0700

8.9602

0.6815

0.1412

9.7195

0.9227

-0.6396

9.7197

0.9227

-0.8675

9.8119

0.9520

-1.0364

8.9821

0.6885

-1.0733

8.9715

0.6851

0.1455

9.7722

0.9394

-0.6510

9.7198

0.9228

-0.8799

9.8160

0.9533

-1.0319

9.7119

0.9202

-1.1969

8.9716

0.6851

0.1566

9.7724

0.9394

-0.6447

9.7725

0.9395

-0.8861

9.8162

0.9534

-1.0354

9.7120

0.9203

-1.2083

8.9757

0.6864

0.1451

9.7764

0.9407

-0.6530

9.7727

0.9395

-0.8872

9.8202

0.9546

-1.0308

9.7162

0.9216

-1.2086

8.9759

0.6865

0.1417

9.7766

0.9408

-0.6524

9.7768

0.9408

-0.8799

9.8204

0.9547

-1.0329

9.7164

0.9217

-1.1961

8.9804

0.6879

0.1459

9.7809

0.9421

-0.6508

9.7769

0.9409

-0.8879

9.8306

0.9579

-1.0287

9.7206

0.9230

-1.2018

8.9806

0.6880

0.1380

9.7810

0.9422

-0.6556

9.7812

0.9423

-0.8813

9.8308

0.9580

-1.0313

9.7207

0.9230

-1.1972

9.7103

0.9197

-0.2174

9.7914

0.9455

-0.6574

9.7814

0.9423

-0.8814

9.8348

0.9593

-1.0295

9.7733

0.9398

-1.2143

9.7105

0.9198

-0.2034

9.7916

0.9456

-0.6558

9.7918

0.9456

-0.8864

9.8349

0.9593

-1.0314

9.7735

0.9398

-1.2140

9.7148

0.9212

-0.2210

9.7956

0.9468

-0.6563

9.7919

0.9457

-0.8884

9.8391

0.9606

-1.0300

9.7776

0.9411

-1.2153

9.7190

0.9225

-0.2127

9.7958

0.9469

-0.6516

9.7960

0.9469

-0.8888

9.8392

0.9607

-1.0315

9.7778

0.9412

-1.2119

9.7192

0.9225

-0.2254

9.7998

0.9482

-0.6507

9.7961

0.9470

-0.8862

9.8498

0.9640

-1.0259

9.7820

0.9425

-1.2116

9.7719

0.9393

-0.2262

9.8000

0.9482

-0.6462

9.8001

0.9483

-0.8833

9.8499

0.9641

-1.0233

9.7822

0.9426

-1.2098

9.7720

0.9393

-0.2201

9.8110

0.9517

-0.6628

9.8003

0.9483

-0.8747

9.8540

0.9654

-1.0272

9.7926

0.9459

-1.2143

9.7761

0.9406

-0.2351

9.8111

0.9518

-0.6598

9.8113

0.9518

-0.8914

9.8542

0.9654

-1.0289

9.7928

0.9459

-1.2128

9.7763

0.9407

-0.2292

9.8152

0.9530

-0.6533

9.8115

0.9519

-0.8943

9.8582

0.9667

-1.0261

9.7968

0.9472

-1.2192

9.7805

0.9420

-0.2297

9.8153

0.9531

-0.6553

9.8155

0.9531

-0.8901

9.8584

0.9668

-1.0235

9.7969

0.9473

-1.2184

9.7807

0.9421

-0.2355

9.8194

0.9544

-0.6509

9.8157

0.9532

-0.8889

9.9330

0.9904

-1.0316

9.8009

0.9485

-1.2139

9.7911

0.9454

-0.2281

9.8196

0.9544

-0.6519

9.8198

0.9545

-0.8795

9.9331

0.9905

-1.0304

9.8011

0.9486

-1.2133

9.7913

0.9454

-0.2260

9.8298

0.9577

-0.6564

9.8199

0.9546

-0.8821

9.9373

0.9918

-1.0439

9.8121

0.9521

-1.2161

9.7953

0.9467

-0.2294

9.8300

0.9577

-0.6573

9.8301

0.9578

-0.8865

9.9374

0.9919

-1.0378

9.8123

0.9521

-1.2171

9.7955

0.9468

-0.2242

9.8339

0.9590

-0.6541

9.8303

0.9578

-0.8917

9.9416

0.9932

-1.0405

9.8163

0.9534

-1.2183

9.7994

0.9480

-0.2260

9.8341

0.9590

-0.6570

9.8343

0.9591

-0.8905

9.9417

0.9932

-1.0361

9.8165

0.9535

-1.2140
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9.7996

0.9481

-0.2245

9.8383

0.9604

-0.6625

9.8344

0.9592

-0.8919

9.9527

0.9967

-1.0320

9.8206

0.9548

-1.2166

9.8106

0.9516

-0.2286

9.8384

0.9604

-0.6579

9.8386

0.9605

-0.8841

9.9528

0.9968

-1.0277

9.8207

0.9548

-1.2188

9.8108

0.9516

-0.2382

9.8490

0.9638

-0.6550

9.8388

0.9605

-0.8857

9.9572

0.9982

-1.0291

9.8309

0.9580

-1.2083

9.8148

0.9529

-0.2254

9.8491

0.9638

-0.6603

9.8493

0.9639

-0.8832

9.9574

0.9982

-1.0325

9.8311

0.9581

-1.2096

9.8150

0.9530

-0.2307

9.8532

0.9651

-0.6542

9.8495

0.9639

-0.8878

9.9615

0.9995

-1.0325

9.8351

0.9594

-1.2194

9.8191

0.9543

-0.2304

9.8534

0.9652

-0.6542

9.8535

0.9652

-0.8851

9.9616

0.9996

-1.0321

9.8353

0.9594

-1.2179

9.8192

0.9543

-0.2274

9.8574

0.9665

-0.6609

9.8537

0.9653

-0.8870

9.9778

0.0047

-1.0261

9.8394

0.9607

-1.2179

9.8295

0.9576

-0.2289

9.8576

0.9665

-0.6535

9.8578

0.9666

-0.8889

9.9779

0.0047

-1.0213

9.8396

0.9608

-1.2129

9.8296

0.9576

-0.2354

9.9321

0.9902

-0.6505

9.8579

0.9666

-0.8865

9.9820

0.0060

-1.0312

9.8501

0.9641

-1.2033

9.8336

0.9589

-0.2343

9.9323

0.9902

-0.6564

9.9325

0.9903

-0.8889

9.9822

0.0061

-1.0317

9.8503

0.9642

-1.2044

9.8338

0.9589

-0.2344

9.9364

0.9915

-0.6565

9.9326

0.9903

-0.8916

9.9866

0.0075

-1.0437

9.8544

0.9655

-1.2129

9.8379

0.9603

-0.2317

9.9366

0.9916

-0.6569

9.9368

0.9917

-0.8962

9.9868

0.0075

-1.0338

9.8546

0.9655

-1.2182

9.8381

0.9603

-0.2343

9.9407

0.9929

-0.6550

9.9411

0.9930

-0.8878

10.8041

0.2671

-0.8897

9.8586

0.9668

-1.2142

9.8486

0.9637

-0.2351

9.9409

0.9930

-0.6586

9.9412

0.9931

-0.8885

10.8043

0.2672

-0.8897

9.8587

0.9669

-1.2093

9.8488

0.9637

-0.2334

9.9518

0.9964

-0.6517

9.9522

0.9965

-0.8816

10.8090

0.2687

-0.8868

9.9333

0.9906

-1.2116

9.8529

0.9650

-0.2271

9.9520

0.9965

-0.6470

9.9523

0.9966

-0.8812

10.8092

0.2687

-0.8865

9.9335

0.9906

-1.2156

9.8530

0.9651

-0.2222

9.9564

0.9979

-0.6488

9.9567

0.9980

-0.8881

10.8946

0.2958

-0.8698

9.9376

0.9919

-1.2206

9.8571

0.9663

-0.2292

9.9566

0.9979

-0.6466

9.9569

0.9981

-0.8794

10.8948

0.2959

-0.8700

9.9377

0.9920

-1.2170

9.8572

0.9664

-0.2351

9.9607

0.9993

-0.6465

9.9610

0.9994

-0.8784

10.8990

0.2973

-0.8598

9.9419

0.9933

-1.2151

9.9318

0.9901

-0.2272

9.9609

0.9993

-0.6536

9.9612

0.9994

-0.8821

10.8992

0.2973

-0.8632

9.9421

0.9933

-1.2257

9.9319

0.9901

-0.2233

9.9768

0.0044

-0.6474

9.9771

0.0045

-0.8781

10.9033

0.2986

-0.8628

9.9530

0.9968

-1.2051

9.9361

0.9914

-0.2293

9.9770

0.0044

-0.6468

9.9773

0.0045

-0.8795

10.9034

0.2987

-0.8643

9.9532

0.9969

-1.2053

9.9363

0.9915

-0.2193

9.9812

0.0058

-0.6554

9.9775

0.0046

-0.8833

10.9122

0.3014

-0.8596

9.9576

0.9983

-1.2158

9.9404

0.9928

-0.2258

9.9813

0.0058

-0.6537

9.9815

0.0059

-0.8905

10.9124

0.3015

-0.8625

9.9577

0.9983

-1.2192

9.9405

0.9929

-0.2275

9.9858

0.0072

-0.6550

9.9817

0.0059

-0.8923

10.9164

0.3028

-0.8583

9.9618

0.9996

-1.2194

9.9515

0.9963

-0.2274

9.9859

0.0073

-0.6545

9.9863

0.0074

-0.8997

10.9166

0.3028

-0.8623

9.9620

0.9997

-1.2146
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9.9516

0.9964

-0.2161

10.8031

0.2668

-0.3437

10.8035

0.2669

-0.6880

10.9206

0.3041

-0.8635

9.9781

0.0048

-1.2093

9.9561

0.9978

-0.2310

10.8033

0.2668

-0.3467

10.8037

0.2670

-0.6822

10.9208

0.3042

-0.8631

9.9783

0.0048

-1.2125

9.9562

0.9978

-0.2240

10.8081

0.2684

-0.3422

10.8085

0.2685

-0.6957

10.9290

0.3068

-0.8552

9.9823

0.0061

-1.2231

9.9604

0.9991

-0.2340

10.8083

0.2684

-0.3469

10.8086

0.2685

-0.7008

10.9292

0.3068

-0.8594

9.9825

0.0062

-1.2264

9.9605

0.9992

-0.2379

10.8937

0.2956

-0.3084

10.8125

0.2698

-0.6903

10.9333

0.3081

-0.8626

9.9870

0.0076

-1.2257

9.9765

0.0043

-0.2330

10.8938

0.2956

-0.3017

10.8127

0.2698

-0.6931

10.9334

0.3082

-0.8632

9.9871

0.0076

-1.2214

9.9766

0.0043

-0.2371

10.8982

0.2970

-0.3030

10.8940

0.2957

-0.6688

10.9374

0.3094

-0.8562

10.8045

0.2672

-1.1161

9.9808

0.0056

-0.2285

10.8984

0.2971

-0.3053

10.8942

0.2957

-0.6671

10.9376

0.3095

-0.8567

10.8047

0.2673

-1.1093

9.9810

0.0057

-0.2292

10.9024

0.2983

-0.3005

10.8986

0.2971

-0.6705

11.8234

0.5908

-0.7819

10.8094

0.2688

-1.1055

9.9854

0.0071

-0.2130

10.9026

0.2984

-0.2992

10.8987

0.2972

-0.6714

11.8236

0.5909

-0.7823

10.8096

0.2689

-1.1015

9.9856

0.0072

-0.2277

10.9114

0.3012

-0.2983

10.9028

0.2984

-0.6724

11.8274

0.5921

-0.7821

10.8949

0.2960

-1.0996

10.8027

0.2667

0.1445

10.9115

0.3012

-0.2927

10.9029

0.2985

-0.6682

11.8276

0.5921

-0.7822

10.8951

0.2960

-1.0979

10.8029

0.2667

0.1476

10.9156

0.3025

-0.2985

10.9117

0.3013

-0.6614

11.8314

0.5934

-0.7791

10.8994

0.2974

-1.0873

10.8077

0.2683

0.1571

10.9158

0.3026

-0.2947

10.9119

0.3013

-0.6581

11.8316

0.5934

-0.7827

10.8996

0.2974

-1.0863

10.8079

0.2683

0.1533

10.9198

0.3038

-0.2982

10.9160

0.3026

-0.6669

11.8393

0.5959

-0.7794

10.9036

0.2987

-1.1000

10.8933

0.2954

0.1996

10.9199

0.3039

-0.2971

10.9161

0.3027

-0.6692

11.8394

0.5959

-0.7754

10.9038

0.2988

-1.0977

10.8935

0.2955

0.1979

10.9284

0.3066

-0.2870

10.9201

0.3039

-0.6614

11.8433

0.5971

-0.7834

10.9126

0.3016

-1.0993

10.8979

0.2969

0.2016

10.9324

0.3079

-0.2990

10.9203

0.3040

-0.6620

11.8435

0.5972

-0.7846

10.9127

0.3016

-1.0989

10.8981

0.2969

0.1974

10.9326

0.3079

-0.2981

10.9285

0.3066

-0.6643

11.8474

0.5984

-0.7816

10.9168

0.3029

-1.1052

10.9021

0.2982

0.2099

10.9366

0.3092

-0.2872

10.9287

0.3067

-0.6680

11.8476

0.5985

-0.7881

10.9169

0.3029

-1.1023

10.9022

0.2983

0.2040

10.9367

0.3092

-0.2865

10.9328

0.3080

-0.6622

11.8554

0.6010

-0.7807

10.9210

0.3042

-1.0984

10.9110

0.3011

0.2064

11.8226

0.5906

-0.1969

10.9329

0.3080

-0.6664

11.8556

0.6010

-0.7836

10.9211

0.3043

-1.1011

10.9112

0.3011

0.2095

11.8227

0.5906

-0.2017

10.9369

0.3093

-0.6460

11.8597

0.6023

-0.7868

10.9293

0.3069

-1.0899

10.9153

0.3024

0.2063

11.8266

0.5918

-0.1951

10.9371

0.3093

-0.6460

11.8599

0.6024

-0.7868

10.9295

0.3069

-1.0937

10.9154

0.3025

0.2087

11.8268

0.5919

-0.1945

11.8229

0.5907

-0.5835

11.8638

0.6037

-0.7844

10.9336

0.3082

-1.0980

10.9194

0.3037

0.2121

11.8306

0.5931

-0.1957

11.8231

0.5907

-0.5828

11.8640

0.6037

-0.7863

10.9338

0.3083

-1.0951
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10.9196

0.3038

0.2077

11.8308

0.5932

-0.1935

11.8270

0.5920

-0.5800

11.9000

0.6151

-0.7955

10.9378

0.3095

-1.0781

10.9321

0.3077

0.2091

11.8384

0.5956

-0.1971

11.8271

0.5920

-0.5836

11.9001

0.6152

-0.7987

10.9379

0.3096

-1.0759

10.9322

0.3078

0.2144

11.8386

0.5956

-0.1972

11.8310

0.5932

-0.5766

11.9042

0.6165

-0.7913

11.8238

0.5909

-1.0203

10.9362

0.3091

0.2137

11.8425

0.5969

-0.1952

11.8311

0.5933

-0.5744

11.9043

0.6165

-0.7938

11.8239

0.5910

-1.0224

10.9364

0.3091

0.2165

11.8426

0.5969

-0.1994

11.8388

0.5957

-0.5744

11.9083

0.6178

-0.7943

11.8278

0.5922

-1.0211

11.8222

0.5904

0.3168

11.8466

0.5982

-0.2009

11.8389

0.5958

-0.5749

11.9085

0.6178

-0.7985

11.8279

0.5923

-1.0175

11.8224

0.5905

0.3225

11.8468

0.5982

-0.2019

11.8428

0.5970

-0.5786

11.9165

0.6204

-0.7947

11.8318

0.5935

-1.0164

11.8263

0.5917

0.3218

11.8546

0.6007

-0.2023

11.8430

0.5970

-0.5831

11.9167

0.6204

-0.7884

11.8320

0.5935

-1.0138

11.8265

0.5918

0.3243

11.8548

0.6008

-0.2035

11.8470

0.5983

-0.5763

11.9207

0.6217

-0.7898

11.8396

0.5960

-1.0149

11.8303

0.5930

0.3247

11.8589

0.6021

-0.2018

11.8471

0.5983

-0.5763

11.9209

0.6218

-0.7941

11.8398

0.5960

-1.0148

11.8305

0.5931

0.3200

11.8590

0.6021

-0.2009

11.8549

0.6008

-0.5807

11.9250

0.6231

-0.7968

11.8436

0.5972

-1.0215

11.8381

0.5955

0.3166

11.8630

0.6034

-0.2041

11.8551

0.6009

-0.5779

11.9252

0.6231

-0.7979

11.8438

0.5973

-1.0194

11.8383

0.5955

0.3123

11.8632

0.6035

-0.2045

11.8592

0.6022

-0.5806

11.9332

0.6257

-0.8024

11.8477

0.5985

-1.0247

11.8421

0.5968

0.3111

11.8991

0.6149

-0.2208

11.8594

0.6022

-0.5804

11.9334

0.6257

-0.8016

11.8479

0.5986

-1.0255

11.8423

0.5968

0.3157

11.8993

0.6149

-0.2214

11.8634

0.6035

-0.5756

11.9372

0.6270

-0.8045

11.8558

0.6011

-1.0156

11.8463

0.5981

0.3175

11.9034

0.6162

-0.2190

11.8635

0.6036

-0.5776

11.9374

0.6270

-0.8067

11.8559

0.6011

-1.0169

11.8464

0.5981

0.3114

11.9035

0.6163

-0.2156

11.8995

0.6150

-0.5967

11.9413

0.6283

-0.7959

11.8601

0.6025

-1.0266

11.8542

0.6006

0.3175

11.9075

0.6175

-0.2243

11.8996

0.6150

-0.5959

11.9415

0.6283

-0.7991

11.8602

0.6025

-1.0269

11.8544

0.6007

0.3088

11.9077

0.6176

-0.2290

11.9037

0.6163

-0.5827

11.9499

0.6310

-0.8041

11.8642

0.6038

-1.0178

11.8585

0.6020

0.3101

11.9157

0.6201

-0.2270

11.9039

0.6164

-0.5718

11.9501

0.6311

-0.8039

11.8644

0.6038

-1.0156

11.8587

0.6020

0.3111

11.9159

0.6202

-0.2249

11.9079

0.6176

-0.5937

11.9542

0.6324

-0.8008

11.9003

0.6152

-1.0306

11.8627

0.6033

0.3063

11.9199

0.6215

-0.2324

11.9080

0.6177

-0.5958

11.9544

0.6324

-0.8000

11.9005

0.6153

-1.0343

11.8628

0.6033

0.3066

11.9201

0.6215

-0.2287

11.9161

0.6202

-0.5923

11.9584

0.6337

-0.7998

11.9045

0.6166

-1.0290

11.8988

0.6148

0.2877

11.9242

0.6228

-0.2336

11.9162

0.6203

-0.5904

11.9586

0.6337

-0.8022

11.9047

0.6166

-1.0279

11.8989

0.6148

0.2896

11.9243

0.6229

-0.2319

11.9203

0.6216

-0.5973

11.9665

0.6363

-0.8052

11.9087

0.6179

-1.0306

11.9030

0.6161

0.2798

11.9324

0.6254

-0.2328

11.9204

0.6216

-0.5956

11.9666

0.6363

-0.8092

11.9088

0.6179

-1.0268
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11.9032

0.6162

0.2828

11.9325

0.6255

-0.2311

11.9245

0.6229

-0.6037

11.9705

0.6375

-0.8025

11.9169

0.6205

-1.0293

11.9072

0.6174

0.2791

11.9364

0.6267

-0.2348

11.9247

0.6230

-0.6007

11.9707

0.6376

-0.8003

11.9170

0.6206

-1.0300

11.9073

0.6175

0.2796

11.9366

0.6268

-0.2325

11.9327

0.6255

-0.6005

11.9747

0.6389

-0.8090

11.9210

0.6218

-1.0249

11.9154

0.6200

0.2713

11.9405

0.6280

-0.2362

11.9329

0.6256

-0.6005

11.9749

0.6389

-0.8100

11.9212

0.6219

-1.0273

11.9155

0.6201

0.2759

11.9407

0.6281

-0.2363

11.9368

0.6268

-0.6025

11.9831

0.6415

-0.8111

11.9253

0.6232

-1.0354

11.9196

0.6214

0.2771

11.9491

0.6307

-0.2437

11.9369

0.6269

-0.6071

11.9833

0.6416

-0.8148

11.9255

0.6232

-1.0352

11.9197

0.6214

0.2759

11.9492

0.6308

-0.2400

11.9409

0.6281

-0.5958

11.9873

0.6429

-0.8136

11.9335

0.6258

-1.0359

11.9238

0.6227

0.2728

11.9534

0.6321

-0.2367

11.9410

0.6282

-0.5970

11.9875

0.6429

-0.8169

11.9337

0.6258

-1.0370

11.9240

0.6228

0.2728

11.9536

0.6322

-0.2345

11.9494

0.6308

-0.6157

11.9915

0.6442

-0.8058

11.9376

0.6271

-1.0362

11.9320

0.6253

0.2642

11.9576

0.6334

-0.2453

11.9496

0.6309

-0.6068

11.9917

0.6442

-0.8098

11.9377

0.6271

-1.0377

11.9322

0.6254

0.2656

11.9578

0.6335

-0.2466

11.9537

0.6322

-0.5933

12.0017

0.6474

-0.8128

11.9417

0.6284

-1.0278

11.9361

0.6266

0.2665

11.9656

0.6360

-0.2509

11.9539

0.6323

-0.5868

12.0018

0.6475

-0.8103

11.9418

0.6284

-1.0316

11.9362

0.6266

0.2622

11.9658

0.6360

-0.2426

11.9579

0.6335

-0.6047

12.0061

0.6488

-0.8129

11.9503

0.6311

-1.0372

11.9402

0.6279

0.2574

11.9697

0.6373

-0.2481

11.9581

0.6336

-0.6094

12.0062

0.6489

-0.8169

11.9504

0.6312

-1.0361

11.9403

0.6280

0.2669

11.9699

0.6373

-0.2441

11.9660

0.6361

-0.6067

12.0102

0.6501

-0.8202

11.9545

0.6325

-1.0322

11.9487

0.6306

0.2535

11.9739

0.6386

-0.2543

11.9661

0.6361

-0.6015

12.0104

0.6502

-0.8214

11.9547

0.6325

-1.0310

11.9489

0.6307

0.2574

11.9741

0.6387

-0.2518

11.9700

0.6374

-0.6049

12.8320

0.9111

-1.0117

11.9587

0.6338

-1.0277

11.9531

0.6320

0.2494

11.9823

0.6413

-0.2586

11.9702

0.6374

-0.6061

12.9134

0.9370

-1.0195

11.9589

0.6339

-1.0318

11.9532

0.6320

0.2593

11.9825

0.6413

-0.2589

11.9742

0.6387

-0.6165

12.9571

0.9508

-1.0277

11.9668

0.6364

-1.0317

11.9573

0.6333

0.2464

11.9865

0.6426

-0.2570

11.9744

0.6388

-0.6115

12.9578

0.9511

-1.0239

11.9670

0.6364

-1.0301

11.9574

0.6334

0.2542

11.9866

0.6427

-0.2622

11.9826

0.6414

-0.6117

12.9585

0.9513

-1.0333

11.9708

0.6376

-1.0333

11.9653

0.6359

0.2459

11.9907

0.6439

-0.2601

11.9828

0.6414

-0.6146

12.9813

0.9585

-1.0275

11.9710

0.6377

-1.0305

11.9655

0.6359

0.2418

11.9908

0.6440

-0.2526

11.9868

0.6427

-0.6124

12.9820

0.9588

-1.0269

11.9751

0.6390

-1.0463

11.9694

0.6372

0.2461

12.0009

0.6472

-0.2618

11.9870

0.6428

-0.6185

12.9827

0.9590

-1.0280

11.9752

0.6390

-1.0473

11.9695

0.6372

0.2390

12.0010

0.6472

-0.2631

11.9910

0.6440

-0.6127

13.0018

0.9651

-1.0236

11.9834

0.6416

-1.0403

11.9736

0.6385

0.2411

12.0052

0.6486

-0.2648

11.9912

0.6441

-0.6088

13.0025

0.9653

-1.0248

11.9836

0.6417

-1.0391
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11.9737

0.6386

0.2420

12.0054

0.6486

-0.2727

12.0012

0.6473

-0.6080

13.0031

0.9655

-1.0242

11.9876

0.6430

-1.0421

11.9819

0.6412

0.2222

12.0094

0.6499

-0.2577

12.0014

0.6473

-0.6141

13.0164

0.9697

-1.0372

11.9878

0.6430

-1.0439

11.9821

0.6412

0.2316

12.0096

0.6499

-0.2537

12.0056

0.6487

-0.6216

13.0170

0.9699

-1.0347

11.9918

0.6443

-1.0437

11.9861

0.6425

0.2228

12.9077

0.9352

-0.6596

12.0057

0.6487

-0.6230

13.0361

0.9759

-1.0426

11.9920

0.6444

-1.0383

11.9863

0.6425

0.2219

12.9091

0.9356

-0.6449

12.0097

0.6500

-0.6153

13.7146

0.1914

-0.9396

12.0020

0.6475

-1.0371

11.9903

0.6438

0.2242

12.9541

0.9499

-0.6380

12.0099

0.6500

-0.6108

13.7153

0.1916

-0.9465

12.0022

0.6476

-1.0369

11.9905

0.6439

0.2312

12.9769

0.9571

-0.6466

12.9099

0.9359

-0.8896

13.7571

0.2049

-0.9325

12.0064

0.6489

-1.0484

12.0005

0.6471

0.2146

12.9775

0.9573

-0.6508

12.9113

0.9363

-0.8793

13.7578

0.2052

-0.9317

12.0066

0.6490

-1.0448

12.0007

0.6471

0.2124

12.9782

0.9575

-0.6575

12.9549

0.9502

-0.8810

13.7850

0.2138

-0.9211

12.0106

0.6503

-1.0455

12.0049

0.6485

0.2171

12.9975

0.9637

-0.6429

12.9556

0.9504

-0.8849

13.7856

0.2140

-0.9270

12.0107

0.6503

-1.0462

12.0051

0.6485

0.2150

12.9982

0.9639

-0.6489

12.9562

0.9506

-0.8835

13.7963

0.2174

-0.9225

12.9170

0.9381

-1.2103

12.0091

0.6498

0.2129

13.0121

0.9683

-0.6633

12.9791

0.9578

-0.8843

13.7970

0.2176

-0.9219

12.9593

0.9516

-1.2166

12.0092

0.6498

0.2039

13.0128

0.9686

-0.6639

12.9797

0.9580

-0.8886

13.8103

0.2218

-0.9177

12.9600

0.9518

-1.2150

12.8248

0.9088

-0.2152

13.0335

0.9751

-0.6664

12.9804

0.9583

-0.8861

13.8110

0.2220

-0.9201

12.9606

0.9520

-1.2154

12.9054

0.9344

-0.2177

13.7103

0.1900

-0.4599

13.0003

0.9646

-0.8847

13.8243

0.2262

-0.9193

12.9848

0.9597

-1.2144

12.9512

0.9490

-0.2272

13.7109

0.1903

-0.4698

13.0010

0.9648

-0.8894

13.8249

0.2265

-0.9183

13.0039

0.9657

-1.2119

12.9519

0.9492

-0.2139

13.7530

0.2036

-0.4422

13.0141

0.9690

-0.8927

13.8343

0.2294

-0.9148

13.0047

0.9660

-1.2106

12.9744

0.9563

-0.2390

13.7537

0.2038

-0.4394

13.7123

0.1907

-0.7727

13.8349

0.2296

-0.9130

13.0053

0.9662

-1.2150

12.9751

0.9566

-0.2380

13.7810

0.2125

-0.4263

13.7130

0.1909

-0.7721

13.8448

0.2328

-0.9163

13.0183

0.9703

-1.2227

12.9758

0.9568

-0.2329

13.7816

0.2127

-0.4291

13.7551

0.2043

-0.7522

13.8455

0.2330

-0.9126

13.0189

0.9705

-1.2212

12.9954

0.9630

-0.2114

13.7922

0.2161

-0.4187

13.7558

0.2045

-0.7539

13.8814

0.2444

-0.9019

13.0300

0.9740

-1.2006

12.9960

0.9632

-0.2505

13.7928

0.2163

-0.4248

13.7830

0.2131

-0.7415

13.8821

0.2446

-0.9041

13.0373

0.9763

-1.2175

12.9966

0.9634

-0.2204

13.8062

0.2205

-0.4183

13.7836

0.2133

-0.7440

13.9046

0.2518

-0.8892

13.7166

0.1921

-1.1580

13.0109

0.9680

-0.2497

13.8069

0.2207

-0.4139

13.7942

0.2167

-0.7418

13.9053

0.2520

-0.8943

13.7172

0.1923

-1.1584

13.0322

0.9747

-0.2282

13.8201

0.2249

-0.4037

13.7949

0.2169

-0.7446

13.9148

0.2550

-0.8952

13.7593

0.2056

-1.1462

13.7082

0.1894

-0.0018

13.8207

0.2251

-0.4092

13.8084

0.2212

-0.7316

13.9155

0.2552

-0.8945

13.7599

0.2058

-1.1493
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13.7088| 0.1896 [-0.0092|13.8303| 0.2282 |-0.4043 |13.8090| 0.2214 |-0.7363|13.9283| 0.2593 |-0.8905|13.7870| 0.2144 |-1.1462
13.7510| 0.2030 | 0.0235 {13.8310| 0.2284 |-0.4023|13.8222| 0.2256 (-0.7353|13.9290| 0.2595 |-0.8878|13.7876| 0.2146 |-1.1446
13.7517{ 0.2032 | 0.0212 {13.8404| 0.2314 |-0.4009 |13.8229| 0.2258 |-0.7301 13.7983| 0.2180 |-1.1411
13.7788| 0.2118 | 0.0485 |13.8412| 0.2316 |-0.4005 |13.8323| 0.2288 |-0.7308 13.7989| 0.2182 |-1.1430
13.7794| 0.2120 | 0.0462 |13.8770| 0.2430 |-0.3764|13.8330| 0.2290 |-0.7342 13.8124| 0.2225 |-1.1381
13.7902| 0.2154 | 0.0532 |13.8779| 0.2433 |-0.3785|13.8427| 0.2321 |-0.7261 13.8130| 0.2227 |-1.1395
13.7909| 0.2157 | 0.0549 |13.9003| 0.2504 |-0.3670|13.8435| 0.2323 |-0.7314 13.8263| 0.2269 |-1.1360
13.8042| 0.2199 | 0.0614 |13.9009| 0.2506 |-0.3706 [13.8794| 0.2437 |-0.7135 13.8270| 0.2271 |-1.1370
13.8048| 0.2201 | 0.0697 {13.9108| 0.2537 |-0.3628|13.8800| 0.2440 |-0.7198 13.8362| 0.2300 |-1.1310
13.8181| 0.2243 | 0.0758 {13.9114| 0.2539 |-0.3659|13.9026| 0.2511 |-0.7091 13.8368| 0.2302 |-1.1328
13.8188| 0.2245 | 0.0747 |13.9234| 0.2577 |-0.3579(13.9032| 0.2513 |-0.7151 13.8469| 0.2334 |-1.1319
13.8284| 0.2276 | 0.0741 |13.9241| 0.2580 |-0.3550|13.9127| 0.2544 |-0.7046 13.8475| 0.2336 (-1.1278
13.8290| 0.2277 | 0.0680 13.9134| 0.2546 |-0.7040 13.8963| 0.2491 |-1.1250
13.8383| 0.2307 | 0.0871 13.9263| 0.2587 |-0.7043 13.8969| 0.2493 (-1.1210
13.8390| 0.2309 | 0.0847 13.9271| 0.2589 |-0.7027 13.9066| 0.2524 |-1.1197
13.8733| 0.2418 | 0.0992 13.9073| 0.2526 |-1.1175
13.8744| 0.2422 | 0.1090 13.9174| 0.2558 |-1.1108
13.8983| 0.2498 | 0.1174 13.9181| 0.2560 |-1.1123
13.8990| 0.2500 | 0.1212 13.9304| 0.2600 |-1.1161
13.9087| 0.2531 | 0.1236 13.9311 0.2602 |-1.1129
13.9094| 0.2533 | 0.1234

13.9213| 0.2571 | 0.1314

13.9219| 0.2573 | 0.1294
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