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ABSTRACT 

 

The Cepheid variable star SZ Tauri was photometrically observed at Mount Laguna 

Observatory in November, 2004, and new elements of its pulsation and physical properties 

were determined.  The pulsation was found to have a period of P = 3.1488 ± 0.0033 days, 

with an epoch in the Johnson V passband of HJD 2,453,316.5166.  Epoch lagging of the 

UBVRI passbands was discovered, and theoretical analysis and modeling is presented which 

explains it.  This should ultimately lead to improvement in the accuracy of the period-

luminosity relationship, as well as lend observational insight into stellar photospheric 

structure and behaviour.  Baade-Wesselink and Balona analyses were carried out with 

archival radial velocity data, and the radii were determined to be 37.9 ± 2.1 RSun and 42.5 ± 

2.3 RSun respectively.  The Balona radius is suggested as the more accurate of the two.  This 

radius confirms SZ Tau‟s pulsation mode as being in the first overtone. 
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For everyone must see 

that astronomy compels the soul to look upwards 

and leads us from this world 

to another. 

 

Plato  
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Chapter 1:  Historical Overview 

 

1.1  Development of Modern Theory 

 

The prototype for the class of pulsating stars known as Cepheids is δ Cephei, a star 

that was first observed to vary in light by a young English astronomer named John 

Goodricke, on October 19, 1784 (Goodricke 1786).  In the following ten months, 

Goodricke observed the star on at least one hundred separate occasions - reportedly a record 

in the English clime - but this devotion was ultimately Goodricke‟s end, as “in the 

consequence of exposure to night air in astronomical observations” (Fernie 1985)1, he 

caught pneumonia and died at the early age of twenty-one, on April 20, 1786.  The term 

“Cepheid” was coined by a Miss Clerke (as cited by Brunt (1913)), who used it to classify 

short-period variable stars in which the rise to maximum brightness from minimum 

occupied less than half of the period of variation.  This taxonomy has subsequently been 

changed to include a wider class of stars whose pulsation is due to an envelope ionization 

mechanism, as described below. 

In 1894, Belopolsky (1894) discovered the radial velocity variations of δ Cephei 

through spectral analysis, and in 1899 Schwarzschild2 found that changes in the brightness of 

a Cepheid accompanied changes in the effective temperature.  However, this was considered 

                                                   

1 Original source of quotation not specified.   
2 See Fernie, 1985. 
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evidence that Cepheids were in binary systems, though non-eclipsing.  The light and 

temperature variation was thought to be due to tidal effects from the companion, even 

though a second spectrum could never be found.  However, already by 1879 the German 

physicist August Ritter3 had suggested that the variations in light could be due to the radial 

pulsations brought about via adiabatic changes in the effective temperature, and when 

Shapley (1914) proposed the pulsation hypothesis as a serious alternative to the other 

theories, that perspective started to gain wider acceptance.  Shapley‟s reasoning was based on 

an analysis of observed facts and the known problems with the other theories.  For example, 

the newly developed classification system that sorted stars into dwarfs and giants placed 

Cepheids well into the supergiant class (based on work by Russell and Hertzsprung), and this 

placed the theoretical orbits of the companions of Cepheids well inside the Cepheid 

atmospheres.  The light variations of Cepheids then quickly gained acceptance as being due 

to the dynamical effects of a single star, although the exact physical nature of the effect had 

to await a fundamental explanation almost fifty years later.  However, by 1918 Eddington 

had published two papers (Eddington 1917, 1918) which brought the pulsation hypothesis 

to the level of a “major astrophysical theory” (Rosseland 1949).  This work was based on the 

adiabatic pulsations of a gaseous star with a given density distribution, as opposed to a 

homogeneous star, as in the case of Ritter‟s earlier work. 

Even without a clear understanding of the mechanism of Cepheid pulsation, these 

stars rose to a centrally important status in astronomy.  In 1912, Henrietta Leavitt (Leavitt & 

Pickering 1912) discovered that Cepheids in the Small Magellanic Cloud showed a clear 

                                                   

3 See Rosseland, 1949. 
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relationship between period and apparent luminosity.  Hertzsprung later used this relation to 

determine the distance to the Small Magellanic Cloud, Shapley for that to both Clouds and a 

number of globular clusters, and Hubble for the distance to the Andromeda Galaxy and 

other galactic systems.  This allowed for proof of the existence of extragalactic systems, and 

almost overnight the dimension of the universe grew to a previously incredulous scale.  The 

study of Cepheids has also shed light on the processes of stellar evolution and stellar 

atmospheric structure. 

The works by Baker & Kippenhahn (1962) and by Cox (1963) and Zhevakin (1963) 

finally explained the physical cause of Cepheid pulsation in terms of non-adiabatic opacity 

effects of an ionizing element within the stellar atmospheric envelope.  Earlier ground work 

by Eddington (1941a, 1941b, 1942) had suggested a mechanism similar to this; however, he 

had identified hydrogen as the crucial element, and also considered core nuclear reactions as 

being the driving source behind the pulsations, with hydrogen ionization acting as only a 

damping effect.  In fact, nuclear reactions provide only the mean luminosity of the star, and 

have no effect on surface pulsations due to strong interior damping and due to the highly 

centralized nature of the nuclear core in the late-type stars to which Cepheids belong (Cox 

1985; Epstein 1950).  The pulsations actually originate in the outer layers of the star, and the 

crucial ionizing element was identified as singly ionized helium, He II (Cox 1980). 

The envelope ionization mechanism absorbs heat from the layer upon compression, 

and releases heat upon expansion.  Because the source of heat ultimately comes from the 

luminosity of the nuclear reactions many layers below, the only way to store and lose heat is 

through modulation of the radiation flowing through the upper atmosphere.  A driving 

mechanism can be set up only in a transition region between quasi-adiabacity and non-
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adiabacity (Cox 1985), and where coincidentally there is enough ionizing material (i.e., He II) 

for the process to have a strong enough physical influence.  The lower limit for the 

concentration of helium is in the vicinity of ten to fifteen percent, with 50% of it being 

ionized (Kukarkin 1975).  The depth of the region of critical He II to He III ionization is 

that corresponding to a temperature of 35000 to 55000 K (Bohm-Vitense 1958; Zhevakin 

1953), which is far above the core nuclear reactions but still well below the radiative 

photospheric layers.  Because this happens at only a very narrowly defined window of 

effective surface temperature, the “instability strip” on the Hertzsprung-Russell diagram has 

a nearly vertical orientation, shown in Figure 1-1 below.  There is only a minor dependence 

on the other physical parameters, such as gravity.  The instability strip contains almost all the 

types of pulsating variable stars on the H-R diagram including Cepheid, RR Lyrae, W 

Virginis, ZZ Ceti, RV Tauri, Delta Scuti, SX Phoenicis, and rapidly oscillating Ap stars.  The 

existence of the red edge of the pulsation instability strip is due to the damping effect of 

strong convection currents in the cooler stars (Dupree 1977).  The existence of the blue edge 

is due to the surface temperature of such stars being too high for the helium ionization 

mechanism to occur, such that the ionization region is too close to the surface or doesn‟t 

even exist at all. 
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Figure 1-1:  Hertzsprung-Russell diagram.  The instability strip cuts though almost the entire range of 
stellar classes.  Image source: http://web.njit.edu/~dgary/321/Lecture6.html, copied with permission. 

 

 

http://web.njit.edu/~dgary/321/Lecture6.html
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There are ultimately three mechanisms which provide the instability and driving 

force of Cepheid pulsation.  The dominant ionization effect is to provide another degree of 

freedom to the gas of the atmosphere, so that under compression the energy does not all go 

to thermal kinetic energy, as it would adiabatically.  Therefore, the gas remains relatively cool 

upon compression and causes the opacity in the region to increase, instead of decreasing as it 

normally would.  Under adiabatic conditions the opacity, commonly referred to as the mass 

absorption coefficient κ (kappa), varies as 
3

1

T
, but due to the ionization the temperature 

remains relatively constant.  But opacity also varies linearly with density, and therefore kappa 

will increase upon compression.  This is referred to as the “kappa mechanism” (Baker & 

Kippenhahn 1962).  The increase of kappa upon compression traps energy inside the region 

(it ionizes the gas), and causes the pressure upon expansion to be larger than if it had been 

only adiabatic.  The effect “pumps” the pulsation phase as the gas cools by transferring the 

ionization energy back into the region as radiative and then thermal energy.  Second, the 

relative coolness of the gas causes the layer to radiate less energy, so that it and higher layers 

compress more easily.  This effect is called the “gamma mechanism” (Cox et al. 1966).  

Lastly, when compressed, the surface area of the star is reduced, so that the total radiation 

emitted by the star is also less.  This serves to further trap the radiation inside the star and 

pump the cycle upon expansion, and this effect known as the “r (radius) mechanism” (Baker 

1966). 

The three mechanisms work together to produce a stable oscillation.  Suppose some 

initial, static state of the star and of the critical He II region in particular.  Although the 

region might be initially static, it is not in a stable equilibrium because of the quasi-adiabatic 
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state induced by the potential ionization of the He II.  The region is unstable to pressure and 

temperature fluctuations.  Now upon some perturbation, suppose it to be toward a state of 

higher compression, the gas partly becomes doubly ionized (He II to He III) instead of only 

warming.  There is then not enough thermally induced counter-pressure to retard the 

compression, even though the density is increasing.  The thermal energy is used to ionize the 

gas instead.  The relative coolness of the gas, its now-smaller surface area, and the local 

increase in opacity means that less energy is radiated to higher layers, further destabilizing 

the outer envelope toward compression.  But while the region is compressing less energy is 

radiated outwards from it, and so more energy is trapped below and the radiation pressure 

builds.  This combines with the slowly increasing (i.e., quasi-adiabatically) temperature until a 

crossover point is reached such that the pressure differential begins to point outwards, and 

the region then begins to re-expand or “bounce” back.  But instead of a simple thermal 

increase in volume, the expansion gets pumped by the higher than normal radiative pressure 

from below, and further by the deionization of the gas.  The de-ionizing gas provides 

additional energy, i.e. heat, to the region.  This pumps the thermal contribution of the 

expansion, and so the region becomes unstable towards it.  When enough gas has de-ionized 

and the surface area of the star becomes large enough, the pump disappears and the region 

again becomes unstable toward compression, thus setting up a repeating cycle (Cox, et al. 

1966).  The He II ionization mechanism thus acts as an engine, providing heat to the region 

upon expansion, and absorbing heat upon compression.  But this can only occur at the very 

delicate temperature, compositional, and structural balance of stars of the appropriate mass 

and position on the H-R diagram. 
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There are important observational consequences to this mechanism of pulsation, the 

main one being a de-coupling between the common thermodynamic quantities of density 

and temperature.  Belopolsky (1894) was the first to note the general phase relationship 

between the radial velocity and light curves for Cepheids – that maximum radial velocity 

occurs near the time of minimum light.  Integration of the radial velocity curve gives the 

more intuitive parameter of radial displacement.  In this form the relation shows that the 

time of maximum temperature occurs some time after the that of minimum radius.  

However, this relation was not fully appreciated until the pulsation theory gained in 

popularity, at which point it was thought to present a problem for the theory (Kukarkin 

1975; Rosseland 1949).  The problem was that, under adiabatic conditions, a state of 

minimum radius should correspond to one of maximum density.  But at maximum density, 

the thermodynamic temperature should be maximized as well.  Further confusion worsened 

this issue, with the thought that the time of maximum brightness should also correspond to 

the time of maximum temperature (Rosseland 1949).  This confusion may still exist today.  

However, even if the pulsation was completely adiabatic, maximum luminosity should not 

occur at maximum temperature.  Luminosity is dependent on both temperature and radius, 

and so will maximize at some time other than either of those parameters‟ individual maxima.   

The modern quasi-adiabatic theory of pulsation and the depth at which the 

pulsations originate successfully explain the lag of maximum temperature to minimum 

radius.  The heating of the upper layers caused by the deionization of the gas below, which 

occurs only after the star begins to re-expand, can easily be seen to shift the time of 

maximum temperature to a latter phase.  And the depth at which this heating occurs 
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necessitates a time lag for the process to be reflected in the higher photospheric layers, 

where the surface brightness and temperature are actually observationally measured.   

Already by 1926, however, Baade (1926) had developed a method of testing the 

pulsation theory of Cepheid variability.  First, he correctly recognized that the brightness of 

the star comes from both temperature and radius.  The pulsation theory implied that the 

changes in brightness were due to changes in both of these quantities.  Because the 

temperature variation could be measured through the colour indices, it was possible to 

separate the two effects from the luminosity curve and derive a plot of the radial variation 

with phase.  Second, it was possible to independently derive a plot of the radial variation 

through integration of the radial velocity curve.  If the pulsation theory were true, the two 

plots should, at least qualitatively, agree in phase.  As an aside from the test, if the 

temperature contribution was properly separated from the luminosity curve, it would be 

possible to derive a radius for the Cepheid as well.  For lack of suitable data Baade did not 

undertake any observational proof of the test, but subsequent work by Becker, van Hoof, 

and Wesselink (Becker & Strohmeier 1940; van Hoof 1943; Wesselink 1946b) confirmed the 

pulsation hypothesis by this method.  

Bottlinger (1928) had made a first attempt at the test in 1928 using observations of ζ 

Geminorum, but failed to find the two curves in phase.  However, Baade‟s test required the 

assumption that stars radiate as blackbodies, so Bottlinger concluded that that assumption 

was incorrect instead of blaming the pulsation hypothesis.  Stars do approximately radiate as 

blackbodies, but not to the extent needed for an accurate separation of the temperature from 

the luminosity.  Even today, very carefully calibrated colour indices provide a resolution only 

on the order of 100 K, and this of the same order as a Cepheids‟ change in temperature.  
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Both Becker and van Hoof, in separate work, modified Baade‟s test so that the only 

assumption required was that there exists a single valued relation between the colour index 

and surface brightness for all Cepheids.  The relation used was that determined 

observationally for δ Cephei, and was thought to extend to the whole population of 

Cepheids.  Wesselink simplified this latter postulate, stating his “basic assumption” that there 

is a unique relation between colour and surface brightness for each Cepheid.  This allowed for 

a more definitive formulation of the radius determination through Baade‟s pulsational test, 

and has subsequently become known as the Baade-Wesselink method (Baade 1926; 

Wesselink 1946a, 1946b, 1946c, 1947).  The method has survived in utility to the present day 

and has extended itself to further simplification and methodology (Balona 1977; Caccin et al. 

1981).  See Chapter 2 for further detail. 
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1.2  SZ Tauri 

 

The following table lists all the relevant properties of SZ Tau used and/or calculated 

in this work. 

 

Quantity Value Reference 

Current Period (days) 3.1488 ± 0.0033 
This work (with MLO 

photometric data) 

Average Period (days) 3.1488236 ± 0.0000015 
This work (with O-C 

analysis) 

<U>, <B>, <V>, <R>, <I> 

7.96, 7.39, 6.54, 6.04, 5.52 

± 

.07, .05, .05, .05, .04 

This work 

ΔU, ΔB, ΔV, ΔR, ΔI .63, .51, .34, .27, .21 This work 

Effective Temperature (K) 

(max, mean, min) 

6284, 6021, 5747 

± 

40, 38, 36 

This work 

Spectral Type 

(max, mean, min) 
F6, F7.5, F9 This work 

Luminosity Class Ib Supergiant This work 

Radius (RSun) 42.5 ± 2.3 This work 

Luminosity (LSun) 2138 ± 235 This work 

EB-V 0.29 Turner (1992) 

Mass (MSun) 5.72 Sanewal & Rautela (1989) 

Table 1-1:  List of properties for SZ Tauri. 
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SZ Tau is located on the face of Taurus at right ascension 04h 37m 14s.78 and 

declination +180 32' 34".91 (epoch J2000).  It has been considered a halo member of the 

galactic cluster NGC 1647 (Gieren 1985; Turner 1992), although this has been disputed 

(Gieren, Fouque, & Gomez 1997).  It is a short period low-amplitude s-Cepheid which 

displays that type‟s characteristic sinusoidal variation in its light curve.  The s-Cepheids were 

classified originally by Efremov (1968) were all Cepheids with sinusoidal light curves; 

however, the General Catalogue of Variable Stars (Khopolov 1985) lists 42 Cepheids with 

amplitudes less than ΔV = 0.5 magnitudes and almost symmetric light curves, and classifies 

these as DCEPS (Delta CEPhei S-type)4.  They are a relatively rare breed of Cepheid.  

Antonello et al. (1990) proposed that these Cepheids were all first-overtone pulsators, but 

Platais & Mandushev (1993) report otherwise based on their study of three representative s-

types SU Cas, SZ Tau, and V1726 Cyg.  They found that of the three, only SZ Tau appeared 

to be an overtone pulsator, and we will see that the derived radius and measured period in 

this work confirm that classification.  Milone et al. (1999) subsequently determined SU Cas 

to be an overtone pulsator, but whether or not all DCEPS are overtone pulsators is still 

open to debate (Sachkov 1997).  Overtone pulsation is analogous to the harmonic 

oscillations of a vibrating string.  The fundamental pulsating mode has two fixed nodes at 

the extremities of the oscillating medium (i.e., the string or atmosphere), and uniform bulk 

motion of the medium occurs between these two points.  For a string, the motion of the 

pulsation is transverse to the medium, while for a Cepheid atmosphere the motion is radial, 

i.e., away from and towards the center of the star.  The first overtone of pulsation has an 

                                                   

4 Classical Cepheids have asymmetric light curves, larger amplitudes, and longer periods of variation. 
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additional fixed node midway between5 the two fundamental nodes, such that uniform bulk 

motion of the medium occurs above and below the additional central node, but in opposite 

directions.  The extension to even higher modes of pulsation follows obviously.  Alcock, et 

al. (1995) report on 15 beat Cepheids discovered in the Large Magellanic Cloud pulsating in 

the 2nd overtone; pulsation modes higher than this are not generally expected, but may be 

possible. 

SZ Tau has a long history in the study of Cepheid variables6.  Its variability was first 

reported by Schwarzschild (1910), who gave it the provisional designation of 41.1910 Tauri.  

Hertzsprung initially thought the proper motion of the Cepheid to be similar to that of the 

Hyades stream, and so the star was considered for further photometric observation by 

Munch & Hertzsprung because of the possibility that its parallax could be determined.  The 

results of those observations (Figure 1-2) were reported by Schwarzschild (1911), who found 

the elements for the times of minimum to be  J.D. 2,418,724.16 M.E.Z.  3 .1484d E .7 

 

 

                                                   

5 In a pulsating medium of uniform density the additional node will occur exactly half-way between the two 
fundamental nodes; in a medium where density is a function of length, the additional node will generally occur 
at a point weighted towards the region of higher density. 
6 Though the following is not an exhaustively complete history, it highlights all important developments and 
includes the best quality data. 
7 “M.E.Z.” is Mitteleuropäische Zeit, or Central European Time.  “E”  is the epoch number since JD 
2,418,724.16 M.E.Z. 
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Figure 1-2:  Photographic light curve of SZ Tauri by Schwarzschild.8 

 

Shapley (1913) subsequently used the 1911 data to explore the hypothesis that the 

variation in light was due to an axially-rotating ellipsoidal body.  Although he did treat the 

body as a limb-darkened star, he did not put forth an explanation as to how such a star 

would maintain itself in equilibrium.  Although the data could be modeled extremely well 

with the predicted photometric variation of such a rotating body, simply because SZ Tau‟s 

light curve is so nearly sinusoidal, Shapley himself ultimately propounded the pulsation 

hypothesis as being the best explanation for the cause of the light variations (Shapley 1914).  

Later the same year however, following Shapley‟s work, Haynes (1913) further explored the 

ellipsoidal-body hypothesis using spectrographic radial velocity measurements taken by 

himself at Mt. Hamilton‟s Lick Observatory.  In addition to establishing that the 

                                                   

8 It is not clear what epoch was used for the determination of the phases.  It may not yet have been customary 
to place the maximum at phase zero. 
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spectrographic variations occurred with the same period as the light variations, he noted the 

radical difference in radial velocity between the Hyades stream and SZ Tau (approximately 

40km/s), thus indicating that the star was not likely a member of the stream.  Haynes briefly 

mentions “…it is probable that SZ Tauri should be classified as a Cepheid”.  He appears to 

be the first to have done so. 

Leavitt and Pickering (1914) followed up the analysis of SZ Tau, using their own 

archival photographic data from 210 plates taken between 1891 and 1914 at the Harvard 

College Observatory, to establish a more precise period for the light variation.  They 

reported the elements for the times of maximum as J.D. 2,410,000.60 G.M.T. 3 .1487d E , a 

difference in the period from Schwarzschild‟s work easily within the error of either‟s 

determination (see Table 1-2 on page 22).   

 

 

Figure 1-3:  Photographic light curve of SZ Tauri by Pickering and Leavitt.9 

 

                                                   

9 Normal values were computed using averages of every 5 successive points from the 210 observations.  A re-
determination of the period using the originally published data gives P = 3.14868. 
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The final “classic” investigation of SZ Tau was done by Shapley (1916), in 

observations of spectral type variations carried out at Mt. Wilson Observatory, in a set of 20 

Cepheids.  SZ Tau‟s classification as a Cepheid was by then widely accepted.  Shapley clearly 

demonstrated that the spectral type of a Cepheid changes in accordance with the periodic 

light and radial velocity variations of the stars, and says in regards to this that it 

“…constitute(s) one of the general and fundamental properties of Cepheid variables”.  Also, 

“The variation in spectrum of a Cepheid is undoubtedly as important a part of the 

phenomenon as the fluctuation in light; moreover, it should be as definite a method of 

detecting a star‟s peculiar variability as the measures of magnitude.”  Precise spectral 

measurements of most astronomical phenomena, including Cepheids, are now fundamental 

in their study.   

Using Pickering & Leavitt‟s light curve, Shapley superimposed his spectral type 

classifications at various points throughout the cycle, indicating G spectral type at minimum 

light, F1 to F0 at maximum light, A9 one-quarter day after maximum light, and reverting to 

G thereafter with a claimed uncertainty in these determinations of one or two tenths of a 

spectral interval (Figure 1-4).  He indicated that a re-phasing of his data with an increase of 5 

seconds in the period would place spectral type A9 a quarter of a day earlier, to coincide with 

the time of maximum light, and that such a change is well within the uncertainty of the light 

elements.  Indeed, spectral type as a measure of effective temperature would require the 

hottest type to occur shortly before the time of maximum light, because for Cepheids the 

stellar surface area maximizes approximately 0.3 phase after that.   
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Figure 1-4:  Spectral type as a function of period, as determined by Shapley (1916). 

 

Beginning in 1929, Robinson (1929, 1930a, 1930b) undertook an investigation of 

forty Cepheid light curves utilizing over 30 years of archival photographic data at the 

Harvard College Observatory.  Leavitt had already done this for SZ Tau up to 1914 (Figure 

1-3), so if one assumes that Robinson did not include10 data previous to this time in his 

determination of a new light curve for the star, the light curve and period determined by him 

show a marked change from the previous analysis, in that a rise at minimum was manifest at 

0.45 phase (Figure 1-5).  He also re-reduced Shapley‟s spectral observations to the Harvard 

system, correcting their phase by his epoch and period, and these new determinations of 

spectral type seem to agree with the change of light curve and indicate a possible shift to 

earlier spectral type during the rise (Figure 1-6).  It should be pointed out that Shapley‟s 

                                                   

10  Only normal points and phases are listed in his publications, so it is not possible to check the raw Julian 
dates which make up his data.   
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observations were done only over SZ Tau‟s observational cycle of 1915-1916, whereas 

Robinson‟s data spans from at least 1914 up to 1930, assuming equal observational density 

throughout.  That the earliest spectral type correctly occurs before maximum light lends 

credence to the fidelity of Robinson‟s work.  This may indicate that, if the change in the light 

curve was real, it appeared near or shortly after the time of Leavitt‟s 1914 analysis and 

remained a static feature of the oscillation for a long enough period to become evident in the 

phased light curve data spanning approximately 15 years, or around 1700 cycles.  However, 

Collmann (1930) had measurements of SZ Tau taken visually by himself during the 1927-28 

observational cycle (Figure 1-7).  There is no discernible rise at 0.45 phase and aside from 

what are likely outlying data near phase zero, the curve is smooth.  If Robinson‟s rise at 

minimum was real it seems to have disappeared by 1927 and was the only recorded 

occurrence of the event. 

 

 

Figure 1-5: Photographic light curve of SZ Tauri by Robinson.11 

                                                   

11 The light curve for SZ Tau seems to have a rise at minimum light during this era. 
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Figure 1-6: Photographic light curve of SZ Tauri with the spectral type superimposed.12 

 

 

 

Figure 1-7: Plot of normal points. 

 

The first colour curve for SZ Tau appears to have been determined by Eggen (1951) 

in a study of 32 Cepheids brought about through testing of a new “photomultiplier for the 

precise measurement of magnitudes and colors of stars” (Eggen 1950).  These also appear to 

be the first photoelectric data for SZ Tau.  He did not compute new light elements for the 

data, but used those from the 1948 General Catalogue of Variable Stars in the computation 

                                                   

12 The rise at minimum light may be associated with a change to earlier spectral type. 
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of the phases.  As sparse as the data are, no rise is seen at minimum and the light variation is 

smooth.  He indicates the use of “blue” and “yellow” filters in the determination of the 

colour curve (Figure 1-8). 

 

 

Figure 1-8:  Eggen‟s light and colour curves for SZ tau. 

 

Milone (1967, 1970) and Wamsteker (1972) both have data from the 1965 observing 

cycle of SZ Tau.  Although structure may be found at the minimum of Wamsteker‟s light 

curve (Figure 1-10), Milone‟s excellent photometry clearly shows a smooth variation 

throughout the pulsation (Figure 1-9).  Improperly reduced photometry or observational 

error may be the simplest explanation for the rise seen in Robinson‟s data.   
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Figure 1-9:  Milone‟s UBV (Johnson) light curves for SZ Tau.. 

 

 

Figure 1-10:  Wamsteker‟s light curve for SZ Tau. 

 

 

 Quality data subsequent to 1965 can be found in Szabados (1977), Moffett & Barnes 

(1980), Laney (1992), Bersier et al. (1994a), and Barnes et al. (1997).  For all published data in 
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which the Julian Day times of observation were recorded along with the magnitudes, the 

author has re-determined the pulsational period of the star and listed them, in comparison to 

the originally determined values, in Table 1-2.  The method used to re-determine the period 

and their errors (where possible) is identical to that as discussed in Chapter 3.1.2. 

 

Reference Reported Period Re-determined Period # of Cycles 

Schwarzschild (1911) 3.1484 3.14863 123 

Pickering & Leavitt (1914) 3.1487 3.14868 2590 

Milone (1965) 3.148987 3.1494 ± 0.0006 12 

Szabados (1977) 3.14838 3.1492 ± 0.0004 228 

Moffett & Barnes (1980) 3.14873 3.1492 ± 0.0002 263 

Laney (1992) 3.14873 3.1495 ± 0.0007 214 

Bersier et al. (1994) 3.149138 3.1506 ± 0.0010 29 

Barnes et al. (1997) 3.148727 3.1492 ± 0.0005 80 

Postma (2004) (Chapter 3.1.2) 3.1488 ± 0.0033 5 

Average13 3.1488 ± 0.0002 3.1493 ± 0.0006 - 

Table 1-2:  Period Determinations for SZ Tauri.14 

 

                                                   

13 The “Reported Period” average is the mean of its values and the error is the standard deviation; its dispersion 
is low merely because several values were reported from the same source.  The “Re-determined Period” 
average has weighted each value by the inverse of their errors, and does not include the 1911 and 1914 
determinations because no error can be assigned to them. 
14 Schwarzschild‟s and Pickering & Leavitt‟s single passband data do not allow for determinations of error on 
their periods; the determinations are included for reference, however.  The periods reported in Moffett & 
Barnes, Laney, and Barnes et al. came from the GCVS - they were not originally determined. 
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 Almost every author who has studied SZ Tau has commented on an apparently 

variable period of light pulsation for the star, as is reflected in the 2nd column of the above 

table.  However, this author suspects that the supposed changes in period, based solely on 

what has been interpreted from the reports in column 2, are perhaps due to nothing more 

than different treatments of the data.  Whereas changes in Cepheid period are expected and 

have undoubtedly been detected in observations of other stars, for at least the case of SZ 

Tau the claim is not as well proven as thought.  As of 1965 every single period the author re-

determined is equal within experimental error, as seen in column three of Table 1-2.  It is 

curious that not a single astronomer, out of the 125 or so references in this report (let alone 

those in the table), lists or even discusses an error of determination for their reported 

periods - this actually seems to be the norm.  It not surprising then that the “observed” 

minus “computed” (O-C) times of maximum brightness for SZ Tau show the random 

residuals as reported by various authors, for example Trammell (1987), Szabados (1991), and 

Berdnikov (1997). 

It is important to appreciate that the methodology by which one determines a period 

and epoch from a set of data has a significant effect on the result.  For example, 2nd, 3rd, 4th 

or higher order Fourier polynomials can equally be fitted to a light curve depending on the 

quality of the data and shape of the curve, and each will result in a period which is easily 

different in the third decimal place.  The effect on the calculated time of maximum (the 

epoch) is then of at least the same error, which will propagate quickly for a star of short 

period or for any star given a long enough era.  The density profile of observations have a 

significant effect on the computation of the time of maximum also.  In Barnes et al. (1997) a 

gap in the observations of SZ Tau around the time of maximum results in a poor fit of the 
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light curve around that time, and this ultimately results in an improperly determined epoch 

and a large O-C residual for those data.  Although rates of period change and accuracies of 

determination may undoubtedly exceed the “noise” introduced by overlooking such issues, 

for at least the case of SZ Tau one must seriously question the vast majority of reports in 

which the methodology is not discussed at all, and in which periods and epochs are listed to 

apparently arbitrary precision and without errors of determination. 

One should appreciate also the subtle fact that a period determination from a set of 

data represents merely the average (i.e., best fitting) period for that era.  There may well be 

short term (on the order of one to several epochs) variations in Cepheid period which are 

smoothed over in what are normally sparse observations over a large number of cycles.  The 

larger error in the period determined from the author‟s observations covering only 5 cycles 

(despite being the most excellent quality photometry) of pulsation may be reflective of this, 

while on the other hand, Leavitt‟s best fitting period on poor photometry covering 2590 

cycles can be quite well determined.  Also, while several authors have commented on SZ 

Tau‟s “change in period” between Schwarzschild‟s and Leavitt‟s original determinations, it 

appears to be an incorrect assessment: Leavitt‟s data come from a time span completely 

overlapping that of Schwarzschild‟s observations.  One must realize that Leavitt‟s period is 

only an average over the Leavitt and Pickering data, as is Schwarzschild‟s period - though, 

the latter‟s period is likely less accurately determined because it ranges over a much smaller 

number of cycles, and is quite likely equal to the former‟s period within experimental error 

(as can be seen in column 3 of Table 1-2). 

 It would seem, to the author at least, quite a remarkable feat of precision if a body as 

large, tenuous and turbulent as a supergiant star, forty times the diameter of the sun, could 
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pulsate in its outermost atmospheric layers to a regularity of milliseconds from one epoch to 

the next, as opposed to an average value over many cycles.  For pulsars and binary systems, where the 

moments of inertia which drive the rotation are astronomically large and require equally large 

opposing forces to counteract, this degree of precision from cycle to cycle is not intuitively 

unreasonable.  Unfortunately, most observing programs of Cepheids are not arranged to 

take a large number of accurate brightness measurements over each cycle of pulsation, but 

rather take a small number of poorer photometric measurements scattered throughout a 

large number of cycles - the frequency of observation is almost always much less than one 

per pulsation cycle.  Indeed this is adequate for determining the average period over a large 

number of cycles and may well lead to a very well determined one, but the knowledge of 

cycle-to-cycle variations in period (and pulsation profile) is lost.  And because this analysis 

does not seem to have ever been done before, there is an undercurrent of perhaps 

unjustified belief that a Cepheid variable pulsates to extreme precision in general.  This is an 

issue worthy of further study. 

Giving Schwarzschild‟s and Pickering & Leavitt‟s re-determined periods reasonable 

values of error15, the author computed a weighed line of best fit through all the re-computed 

periods from Table 1-2; this is shown in Figure 1-11.  However, the rate of log|P| 0.17 


, 

when P


 is expressed in seconds per year, does not agree very well with the predictions from 

stellar evolutionary models explored recently by Turner, et al. (2006), for either an overtone 

                                                   

15 Because Pickering and Leavitt‟s observations cover such a large number of cycles, the data for that era 
produce a very sharply peaked scatter vs. period curve (as the method in Chapter 3.1.2), resulting in what must 
be a very well determined average period; the error for the determination was set to 0.0001d.  Schwarzschild‟s 
re-determined period was given an error magnitude of 0.0004d. 
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or fundamental pulsator in any crossing of the instability strip.  This ambiguity is a common 

problem for SZ Tau, as the irregular rates of period change reported by Berdnikov & 

Pastukhova (1995), Trammell (1987), and Szabados (1977) can attest to.  The radius derived 

later in this work does place SZ Tau as an overtone pulsator however, agreeing with results 

by Barnes et al. (2003), Sachkov (1997), and Turner (1992) for example. 

 

 
Figure 1-11:  Possible rate of period change for SZ Tau.16 

 

  

                                                   

16 The error bars are the 95% confidence interval.  The Julian Dates are the means from the respective author‟s 
dates of observations. 
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In a personal communication with the author, David G. Turner (of St. Mary‟s 

University) kindly provided a spreadsheet tabulation of the results of Berdnikov & 

Pastukhova‟s (1995) O-C analysis of SZ Tau.  The observed epoch determined in this work 

was entered into the spreadsheet and can be seen as the last point in Figures 1-12 & 1-13 

below.  Berdnikov and Pastukhova fit a quadratic polynomial to the O-C data in order to 

determine a possible rate of period change for the star, and this was repeated by the author 

with the added data point (Figure 1-12).  The downward-facing parabola indicates a negative 

rate of period change, and its value is -37 ± 4 s/century, or log | P | 0.43 


 s/year.  This 

would place SZ Tau in the second crossing of the Cepheid instability strip if it is an overtone 

pulsator (see Turner, et al. (2006)).  The average period calculated in the O-C analysis is <P> 

= 3.1488236 ± 0.0000015 days. 
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Figure 1-12:  Quadratic fit through the O-C determinations of Berdnikov and Pastukhova.  The period of the 

sinusoidal fit to the residuals is 55.9 years. 

 

 
Figure 1-13:  Linear fit through the O-C data.  The period of the sinusoidal fit to the residuals is 75.7 years. 
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The residuals of the O-C fits in Figure‟s 12 & 13 clearly show a sinusoidal oscillation.  

In Figure 13 a linear polynomial was fit to the O-C data instead, in order to determine if it 

improved the sinusoidal (i.e., 1st order Fourier) fit of the residuals; the root mean squared 

error for the linear residuals fit was 0.181, while for the quadratic residuals fit it was 0.167.  

There is visually very little difference between the two fits, but one might consider the 

quadratic one to be more physically reasonable as it produces a rate of period change within 

expected theoretical limits. 

A possible explanation for the oscillating residuals is a light-time variation due to a 

binary orbit about a companion star.  Based on the sinusoidal fit in Figure 1-12, however, 

this hypothesis can be disproven.  The period of the oscillation for the quadratic fit is 55.9 

years, and Sanewal & Rautela (1989) give an evolutionary mass for SZ Tau of 5.72 MSun.  If 

we assume a companion of solar mass, Kepler‟s Third Law gives a semi-major axis for the 

binary orbit of 27.6 au.  On the other hand, the amplitude of the sinusoid oscillation is 0.564 

days.  Under the binary companion hypothesis, this is the light-time difference between 

when SZ Tau is closest to us in its orbit and then furthest from us.  The amplitude of 0.564 

days is equivalent to 97.7 au, and this is will be the diameter of SZ Tau‟s orbit about the 

barycenter of the binary system projected perpendicularly to the plane of the sky.  If the 

inclination of the system was near 900 there would be (essentially) no projection, and so 97.7 

au is the minimum diameter of the said orbit.  The radius about the barycenter of orbit for a 

solar mass companion would then be 5.72x48.85 au = 278.4 au, giving a total minimum 

semi-major axis of the system of 327.3 au.  This result clearly violates the binary companion 

hypothesis because the minimum semi-major axis computed here must be smaller than the 

actual one computed through Kepler‟s Third Law.  If we assume a companion mass much 
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larger than SZ Tau, so that the projected radius of SZ Tau‟s orbit is equal to the total semi-

major axis, Kepler‟s Third Law stipulates a companion of at least 31.6 MSun.  A star of such 

mass would have a luminosity approximately 106 times that of the sun, swamping SZ Tau‟s 

luminosity of 103.33  LSun, and would have a life-time of only a few million years.  Thus, there 

is no reasonable solution for which the binary companion hypothesis can be validated using 

the O-C data, and this agrees with other findings by Evans (1985) and Szabados (1985).  

One can therefore only suppose evolutionary changes within the star itself as the cause of 

the O-C residuals.  As an overtone pulsator, one may intuitively suspect that the oscillation 

of SZ Tau would not be as stable as, and would be more suspect to various changes than, a 

less energetic fundamental-mode pulsation.  The worsening with time of the sinusoidal fit to 

the O-C residuals (the “Residual Fit Residuals” in the bottom panels of Figures 12 & 13 

above) may be indicative of a growing evolutionary effect.  
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Chapter 2:  Methods of  Analysis 

 

An excellent account of the development of the Baade-Wesselink and Balona 

methods for determining stellar radii can be found in Gautschy (1987). 

 

2.1  The Baade-Wesselink Method 

 

 With the Baade-Wesselink method we wish to determine the phases of equal stellar 

colour index of a periodic variable star, which as representative of the effective temperature, 

represent phases of equal stellar surface brightness.  If at these two phases there is a 

difference in the total luminal output of the star as measured through some passband, it 

must be due to a difference in the stellar radius between the two phases, the implication 

being that the surface area of the emitting source must be either larger or smaller between 

them.  This leads to a methodology for the determination of the stellar radius in absolute 

measure.  One does not expect changes in metallicity to affect the spectral intensity 

distribution over the short time scale of Cepheid variability, and for low amplitude radial 

pulsations pressure effects on the same are also expected to be minor.  This is not always the 

case however, in particular for the usual (Johnson-type) U and B passbands which are 

sensitive to the ionization opacity variations of the Balmer discontinuity at the typical 

Cepheid temperatures and pressures.  This has naturally been the drive behind the use of 

longer-wavelength passbands for surface brightness determinations, so as to avoid such 
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opacity effects when determining the variation in magnitude at such phases.  Also, longer 

wavelength passbands are less sensitive to temperature variations, and more sensitive to 

radius variations.  However, it can be difficult to form accurate colour index curves out of 

IR data because their amplitude variations are so low, making determinations of phases of 

equal temperature very poor.  This is a crucial requirement for both the Baade-Wesselink 

and Balona methods.  It is ultimately much more important to be able to separate the 

temperature effects from the photometric data than it is the radial effects; the radial 

contribution to the light curve is taken into account though the radial velocity data, and so 

the photometric data should primarily be used for the separation of the temperature 

contribution.  Because of the very high sensitivity of the Balmer discontinuity to temperature 

at typical Cepheid temperatures, one could argue that U-y17 would make the best colour 

index for use in the Baade-Wesselink and Balona methods for determining the radius of the 

star.  In any case, it is the radial variation between the two phases of equal surface brightness 

which is the prominent origin of the magnitude difference between those phases. 

 That there can be a difference in magnitude at phases of equal colour temperature 

has a subtle implication for the nature of the radial pulsation: it must follow that the radial 

displacement curve is not conformal with the colour index variation, so that phases of 

maximum brightness do not correlate with phases of maximum radius and vice-versa.  In 

effect, there must be a phase lag between the displacement curve and the colour index and 

light curves, the latter two of which are highly conformal to one another (see Figure 3-31 on 

page 108 for further discussion).  The effective temperature is the overriding determiner in 

                                                   

17 Where „y‟ is some other, longer wavelength passband.  The Johnson U filter transmission profile is centered 
directly on top of the Balmer discontinuity, making that filter the most sensitive to temperature variations. 
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the Cepheid‟s time of maximum brightness, while the radial displacement has a secondary, 

lower order effect on the filtered-passband light curve.  This can be expected because the 

(bolometric) luminosity is effectively dependent on temperature to the fourth power, while 

on radius only to the second via the surface area.  If there were no phase lag between the 

radial displacement curve and the colour index, it would not be possible to formulate a 

methodology based on differences in magnitude since such a condition could never exist. 

 The derivation of the Baade-Wesselink method is quite simple.  In general, the 

luminal output of a star is dependent on the wavelength of the light observed, its effective 

temperature, and its radius (i.e., surface area).  So 

 
2( , , ) ( , )eff effL T R F T R α  (2.1) 

where L is the luminosity18, R is the radius, and F(λ,Teff) is some function representing the 

surface brightness, and is usually thought to be blackbody but doesn‟t necessarily have to be.  

For a pulsating star there is a phase dependence on the temperature and radius parameters, 

so that Teff = Teff(φ) and R = R(φ).19 

If we convert  to magnitudes we have 

 
22.5log( ( , ( ), ( ))) 2.5log( ( , ( )) ( ) )eff effm L T R c F T R c           , (2.2) 

where the constant of proportionality „c‟ has been taken out of the logarithm.  Then a 

difference in magnitude, what will be called here a „magnitude index‟ (MI), can be found 

from  

 
2

1 1 1 1 1 1 12.5log( ( , ( ), ( ))) 2.5log( ( , ( )) ( ) ))eff effm L T R F T R c           

                                                   

18 Luminosity is generally defined bolometrically, so here the λ dependence on L is to indicate a 
monochromatic or  passband luminosity. 
19 We could perhaps note that, similar to effective temperature, this radius is also an effective radius. 
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and 

 
2

2 2 2 2 2 2 22.5log( ( , ( ), ( ))) 2.5log( ( , ( )) ( ) ))eff effm L T R F T R c          , 

so that 

 

2

2 2 2

2,1 2 1 2

1 1 1

( , ( )) ( )
2.5log

( , ( )) ( )

eff

eff

F T R
MI m m

F T R

  

  

 
      

 

 

or,  

 
2 2 2

2,1

1 1 1

( , ( )) ( )
2.5log 5log

( , ( )) ( )

eff

eff

F T R
MI

F T R

  

  

   
      

  

. (2.3) 

Now when we consider 1  = 2 , so that 
1 2( ) ( )eff effT T   and 1 2( ) ( )R R  , but specify 

1 2  , we obtain the commonly known colour index parameter representative of stellar 

effective temperature.  For constant-magnitude non-pulsating stars the radius term in (2.3) is 

always zero and the temperature is constant with time as well, so that the colour index is a 

ratio of fluxes at different wavelengths or integrated wavelength passbands.  The ratio at 

these wavelengths can be related to simple model blackbody curves in order to obtain an 

estimate of the star‟s effective temperature.   

With the surface brightness term being a function of only wavelength and 

temperature, the Baade-Wesselink method determines phases 1 2   but where 

1 2( ) ( )eff effT T  , as determined via the colour index curve, which itself should not depend 

on the radius.  In this case, the surface brightness term in (2.3) goes to zero and we are left 

with 

 2
2,1

1

( )
5log

( )

R
MI

R





 
   

 
. (2.4) 
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As opposed to colour index, (2.4) could be considered a “radius index”, as it is a measure of 

the variation in light due to a variation in radius between the two phases of equal surface 

brightness.  The magnitude difference 
2,1MI  is in this case the variation in magnitude 

between the two points of phase of equal surface brightness, measured at a single wavelength 

or passband.  Differential photometry is therefore wholly sufficient for the purposes here. 

 Considering the fact that the radius is a periodic function of phase and can be 

expected to oscillate about some mean radius R0, we can write 0( ) ( )R R R    , and 

substituting this into (2.4) we have  

 0 2
2,1

0 1

( )
5log

( )

R R
MI

R R

 

 

 
   

 
. (2.5) 

In Chapter 3.2.3 we see how it is possible to derive ( )R   from the radial velocity curve 

and its integration, and thus we can solve for R0 from (2.5) and it will be determined via all-

measurable quantities.  Rearranging (2.5) for R0 we have 

 
2,1

2,1

.2

2 1
0 .2

( ) 10 ( )

10 1

MI

MI

R R
R

   








, (2.6) 

and this is the Baade-Wesselink solution for a periodic variable star‟s mean radius. 
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2.2  The Balona Method 

 

The Balona Method is essentially the continuous analog of the discrete Baade-

Wesselink method.  The Baade-Wesselink method is discrete because only 2 points are 

chosen at any single time in the solution for the stellar radius, while the Balona method fits a 

continuous function to the entire light, colour, and radial velocity curves.   

We begin as before with equation (2.2), 

 
22.5log( ( , ( ), ( ))) 2.5log( ( , ( )) ( ) )eff effm L T R c F T R c           . 

Substituting 0( ) ( )R R R     (where R0 is the mean radius) expanding the logarithm and 

noting that m is a function of all of its dependants, we have 

 
0( ) 2.5log( ( , ( ))) 5log( ( ))effm F T R R c         . (2.7) 

Now ( )m   is a measured quantity, i.e., it is a light curve in some filter passband, and in 

Chapter 3.2.3 we see how it is possible to derive ( )R   from the radial velocity curve.  We 

can assume a linear relationship between the surface brightness term 2.5log( ( , ( )))effF T 

and the effective temperature, colour index, and bolometric correction because the range of 

variation of a Cepheid‟s effective temperature is small (i.e., the exponential dependence on 

temperature of the Planck radiation law can accurately be approximated by a linear function).  

Then 2.5log( ( , ( )))effF T A CI B     , where „CI‟ is the colour index between two 

passbands and „A‟ and „B‟ are constants, so that 

 0( ) ( ) 5log( ( ))m A CI B R R        , (2.8) 
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where the constant „c‟ in (2.7) has been absorbed into „B‟.  In the past it was necessary to 

linearize the logarithm by assuming 0( )R R   , converting log10 to loge and expanding in 

order to facilitate iterative linear least-squares fitting of the relevant light and radial velocity 

curves, but this is no longer necessary as non-linear least squares data fitting algorithms and 

the computational power to do so now exist.  Then (2.8) can be solved numerically (see 

Chapter 4.2) for the parameters A, B, and R0, and this is the Balona solution for obtaining a 

periodic variable star‟s radius.  Equation (2.8) can just as easily be used to derive the Baade-

Wesselink result of (2.6), which shows the intimate similarity between the two methods. 

See Chapter 4 for discussion and application of the Baade-Wesselink and Balona 

methods to real data.  
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Chapter 3:  Data Analysis 

 

3.1  Photometric Reduction and Phasing 

 

3.1.1  Differential Magnitudes from the Mount Laguna Observatory 

 

 Five colour photometry of UBV Johnson and RI Cousins was obtained for SZ Tauri 

during a two week observing run at MLO20 from November 07 through November 20, 

2004.  The Smith21 24” (0.6m) Cassegrain f/20 reflector was used with a thermoelectrically 

cooled Hammamatsu R943-02 GaAs photomultiplier.  Due to SZ Tau‟s short period of 

approximately 3.14 days, and 10-hour long nights, the phase coverage for this observing run 

was nearly complete (Figure 3-1) with small phase gaps occurring at approximately 0.2, 0.52, 

and 0.84 phase, and with quadruple overlap occurring at 0, 0.4 and 0.7 phase.  Inclement and 

“spotty” weather limited the coverage (Figure 3-2), so that 3 nights of observation as well as 

some intra-night cloudy periods were lost.  However, the quadruple observational 

redundancy alleviated some of this loss of phase coverage.  As will shortly be shown in the 

data presentation, two coverage gaps of about 0.15 phase span occur centered at 0.5 and 0.8, 

                                                   

20 Mount Laguna Observatory, San Diego State University, San Diego, California. 
21 Named after Clifford Smith, who founded the SDSU Astronomy Department 
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at the phases of minimum light and mid-way up the ascending branch of the light curve, 

respectively. 

 

 
Figure 3-1:  Predicted Phase Coverage for MLO run.  Observation gaps are denoted by the solid lines. 
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Figure 3-2:  Actual Phase Coverage 

 

 The comparison star used for the differential photometry was HD 29103 (BD +19 

740), an F8 star with V magnitude of 7.25 and B-V of 0.5222.  This is the same star as used 

by Milone (1967, 1970) for a check to HD 29104 (BD +19 742) in his photometric 

investigation of SZ Tau; he found mean-standard-errors (m.s.e.) in the difference between 

them of ±0.002, ±0.001, and ±0.002 for differential light data in U, B, and V, respectively, 

and standardized magnitudes of V = 7.262 ± .002, B-V = .549 ± .002, and U-B = .128 ± 

.002.  To obtain UBVRI standardized magnitudes of the comparison star in this work, eight 

Landolt (1983) standard stars were observed on the night of UT Nov 20, 2004 in order to 

obtain both extinction and transformation coefficients; the stars are listed below in Table 

3-1.  Most nights proved insufficiently photometric for purposes of standardization of 

                                                   

22 Source:  SIMBAD Astronomical Database 
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standard star data, and even this night did not produce highly constrained parameters for the 

extinction and standardization coefficients; more will be discussed ahead.   

 

Star RA Dec V B-V U-B V-R R-I 

SA 93-332 1 54 17 0 35 48 9.789 0.518 -0.024 0.296 0.306 

SA 94-308 2 55 28 0 27 41 8.743 0.494 -0.004 0.29 0.287 

SA 95-206 3 53 30 0 14 44 8.737 0.502 0.015 0.29 0.285 

SA 97-351 5 56 51 0 13 38 9.783 0.205 0.084 0.124 0.142 

SA 114-172 22 42 03 0 09 10 6.969 0.311 0.105 0.187 0.189 

SA 114-272 22 42 11 0 19 37 7.737 0.864 0.473 0.48 0.462 

SA 96-393 4 51 44 0 00 39 9.652 0.598 0.042 0.345 0.343 

SA 99-358 7 53 57 -0 22 10 9.605 0.776 0.509 0.432 0.405 

Table 3-1:  Stars used for the Hardie standardization. 
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Pairing dX dv d(b-v) d(u-b) d(v-r) d(r-i) dV d(B-V) d(U-B) d(V-R) d(R-I) d(X(b-v)) d(X(u-b)) d(X(v-r)) d(X(r-i)) 

332-308 -0.570 0.840 -0.056 -0.217 -0.028 -0.004 1.046 0.024 -0.020 0.006 0.019 -0.608 -1.037 -0.228 0.239 

332-206 -0.703 0.971 -0.071 -0.287 -0.031 -0.016 1.052 0.016 -0.039 0.006 0.021 -0.764 -1.351 -0.279 0.272 

332-206 0.011 1.040 0.018 -0.006 0.002 0.009 1.052 0.016 -0.039 0.006 0.021 0.032 0.006 0.006 0.006 

332-393 -0.542 0.092 -0.155 -0.257 -0.064 -0.068 0.137 -0.080 -0.066 -0.049 -0.037 -0.754 -1.068 -0.281 0.116 

308-206 0.581 0.200 0.074 0.211 0.030 0.013 0.006 -0.008 -0.019 0.000 0.002 0.640 1.042 0.234 -0.233 

308-206 -0.133 0.131 -0.016 -0.070 -0.003 -0.012 0.006 -0.008 -0.019 0.000 0.002 -0.156 -0.315 -0.051 0.034 

308-393 0.028 -0.748 -0.099 -0.040 -0.036 -0.063 -0.909 -0.104 -0.046 -0.055 -0.056 -0.146 -0.032 -0.053 -0.122 

206-206 -0.714 -0.069 -0.090 -0.281 -0.033 -0.026 0.000 0.000 0.000 0.000 0.000 -1.827 -1.967 -1.877 -2.012 

206-393 -0.553 -0.948 -0.173 -0.251 -0.066 -0.077 -0.915 -0.096 -0.027 -0.055 -0.058 -0.786 -1.074 -0.287 0.110 

206-393 0.161 -0.879 -0.083 0.030 -0.033 -0.051 -0.915 -0.096 -0.027 -0.055 -0.058 0.010 0.283 -0.002 -0.156 

351-172 0.669 2.961 -0.025 0.166 -0.034 -0.039 2.814 -0.106 -0.021 -0.063 -0.047 0.419 1.144 0.078 -0.424 

393-358 0.533 0.121 -0.114 -0.263 -0.048 -0.036 0.047 -0.178 -0.467 -0.087 -0.062 0.422 0.430 0.143 -0.238 

272-358 -0.023 -1.871 0.079 -0.016 0.045 0.065 -1.868 0.088 -0.036 0.048 0.057 0.067 -0.057 0.043 0.085 

206-172 0.714 1.856 0.271 0.183 0.134 0.110 1.768 0.191 -0.090 0.103 0.096 1.011 1.240 0.406 -0.166 

308-172 0.581 1.987 0.255 0.113 0.131 0.098 1.774 0.183 -0.109 0.103 0.098 0.856 0.926 0.355 -0.132 

Table 3-2:  Pairing values for the parameters in the Hardie analysis.
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The extinction equation takes the form  

 ' ''

0y y k X k X c       (3.1) 

where y0 is the outside-atmosphere magnitude in any passband, y is the observed-system 

magnitude in any (corresponding to the previous) passband, ' '' & k k  are the first and second 

order coefficients respectively, X is the airmass, and c is the observed-system colour index 

(for example, b-v).  The airmasses were computed using the rational polynomial given by 

Young (1994), 

 
2

3 2

1.002432cos ( ) 0.148386cos( ) 0.0096467

cos ( ) 0.149864cos ( ) 0.0102963cos( ) 0.000303987

z z
X

z z z

 


  
 (3.2) 

where z is the zenith distance of the target; Young claims a maximum error (at the horizon) 

of 0.0037 airmass.  The standardization equation takes the form 

 0 ( )Y y B V      (3.3) 

where Y is the standard magnitude in any passband, ε is the standardization coefficient, and 

B-V is the standard system colour index.  Employing the Hardie (1962) method of 

differencing pairs of standard stars of similar colour index (from Table 3-1, and then Table 

3-2) for determining the coefficients, equations (3.1) and (3.3) become  

 ' ''

0 ( )dy dy k dX k d Xc    (3.4) 

 0 ( )dY dy d B V   . (3.5) 

Generally, the outside-atmosphere magnitudes dy0 are not known in advance, and so the two 

above equations can be combined to give 

 ' '' ( ) ( )dY dy k dX k d Xc d B V     . (3.6) 
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The parameters dY and d(B-V) are the previously known standard star data, while dy, dX, and 

d(Xc) are the measured quantities, and so equation (3.6) can be solved for ' '',  & k k   

through linear least squares.  In Matlab, the backslash operator effects the linear regression 

 ' ''[   ] [  ( ) ( )] \ ( )k k dX d Xc d B V dY dy       (3.7) 

where all the input parameters are column vectors, and the output estimators are scalar 

values.  The error matrix was formed to obtain the standard errors on the estimators, such 

that 

 
1

kl klE H   (3.8) 

 

2
' ''2 ( ( ) ( ) )1

2

i i i i i
kl

k l i

dY dy k dX k d Xc d B V
H



  

      
        
  (3.9) 

where θ(k,l) = 1,2,3 are the estimators ' '',  & k k   from (3.7), and σi are the errors in 

measurement.  Typically, it is best to use the differences between each known value of dY 

and their values computed through equation (3.6) (the bracketed quantity in the numerator 

of equation (3.9), after the estimators have been found via equation (3.7)) for the σi errors in 

measurement; the scalar-valued standard deviation of the differences can alternatively be 

used so that σ1 =  σ2 =…= σn = σ .  Evaluation of equation (3.9) leads to the symmetric square 

matrix 
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 (3.10) 
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and then the diagonal elements k = l = 1, 2, 3 of equation (3.8) are the standard errors for 

' '',  & k k  , respectively.  Finally,   is determined by evaluating equation (3.1) and then 

solving (3.3) for the mean value and standard deviation of .   In the evaluations of 

equations (3.1) though (3.10) the observed-system colour index c = b-v was used for all 

passbands; using passband-colour pairings of u & u-b, b & b-v, v & b-v, r & v-r, and i & r-i did 

not significantly affect the results, which are listed in Table 3-3 below along with the ensuing 

standard magnitudes calculated for the comparison star.  The UBV values match well within 

their error to the values as determined by Milone (1970). 

 

Filter-Colour k’ k’’ ε ζ HD 29103 

U, B-V .733±.044 -.047±.017 -.028±.085 19.315±.034 7.89±.07 

B, B-V .412±.032 -.079±.015 .022±.050 20.019±.035 7.79±.05 

V, B-V .286±.028 -.081±.015 .018±.075 20.249±.034 7.26±.05 

R, B-V .234±.018 -.078±.012 -.036±.074 20.230±.031 6.94±.05 

I, B-V .212±.026 -.086±.016 -.064±.040 19.482±.032 6.64±.04 

Table 3-3:  Extinction and transformation coefficients, and standard magnitudes of the comparison star. 
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Figure 3-3:  A histogram of the differential airmasses shows that most observations were done well below δX = 

0.02. 

 

The errors on the parameters in Table 3-3 are quite large, and the resulting precision 

of the UBVRI magnitudes for HD 29103 would not generally be considered high enough to 

conclude that the star is constant, hadn‟t it already been previously determined.  In the end, 

most nights were not of high enough photometric quality to allow the use of the first order 

coefficients from Table 3-3 for all of them, and so each night was treated separately for 

those using the Bouguer method as described below.  Fortunately, the difference in air mass 

between SZ Tau and HD 29103 was quite small (as shown above in Figure 3-3) so that the 

differential extinction effects were minimal. 
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A graphical user interface program called MLOphot23 was written to assist in the 

reduction of the raw SZ Tau and HD 29103 count data into differential magnitudes.  The 

data output stream from the photometer contained 5 columns; in order they were exposure 

count, universal time, exposure time, a miscellaneous entry, and a filter/object combination 

code.  The filter/object combination code is used for sorting through the data rows in order 

to find the observational results of a specific filter for a particular object.  For example, the 

UBVRI filters were coded 1 through 5 respectively, while the star object, comparison object, 

sky object, and check object were numbered 1 through 4, respectively.  Therefore, to find all 

of a particular data file entries corresponding to the star counts in “U”, one simply searches 

the filter/object column for all entries equal to “11” and then cross-references these indices 

to the other data columns.  In this way the target star counts, comparison star counts, sky 

counts and their times of observation can easily be extracted by computer software from the 

large file containing all the night‟s data. 

 MLOphot allows one to interactively fit smoothing splines to the background sky 

counts and the comparison star counts for subtraction and division from the target star data.  

Only the background sky count is subtracted from the comparison star data.  First, a best fit 

is visually estimated for the sky counts (Figure 3-4, top panel) by varying the smoothing 

factor of the smoothing spline fitting function.  A smoothing spline is the best fitting 

function to use for these purposes because the variations in background brightness and 

atmospheric transparency, although smooth, cannot be expected to be non-pathological24.  

We are thus limited to interactively determining the best smoothing factor because an 

                                                   

23 Created using Matlab‟s Graphical User Interface Development Environment, called GUIDE. 
24 Pathological (in present context): as in not being well represented by any known analytical function.   
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automated least squares routine would not work.  It is also appropriate to have curvature 

between the data points, because this likely mimics the natural variation of the sky more 

reasonably than simple straight-line interpolation. 

Once a satisfactory curve is fit to the background sky data, MLOphot automatically 

computes the interpolated sky counts at the midpoint of the times of the target star and 

comparison star exposures, and then subtracts those values from the target star and 

comparison star data.   

 

 
Figure 3-4:  Example of MLOphot 

 

The next step essentially repeats the first, but now the fitting procedure is applied to 

the comparison star data.  One should note the smooth variations of the background sky 
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counts and comparison star counts in Figure 3-4, indicating that this particular night was 

clear and stable with perhaps some transparency variation beginning at 8:30 hours UT, as 

evidenced by the variation in the comparison star curve as well as the increasing level of 

background sky light contributing to the increase in the rates thereof.  The comparison star 

counts are then interpolated to the times of observation of the target star data using the 

smoothing spline fit, and these values along with the target star counts are recorded and used 

for the differential photometry.   

The raw differential magnitudes are computed using  

102.5log
Star Count

dm
Comparison Count

 
   

 
,                           (3.11) 

which converts the counts into un-standardized differential ground-magnitudes, and then 

the outside-atmosphere differential magnitudes are computed using the differential 

extinction equation of (3.4), where now the differences are between the measured quantities 

for SZ Tau and HD 29103.  For each night of observations, the first-order extinction 

coefficient was calculated using the Bouguer method of plotting the constant-star magnitude 

vs. its airmass, and then determining the slope of the line of best fit for the first-order 

extinction coefficient.  The quality of the observations is evidenced in that the difference 

between this set of differential data and published standard data for SZ Tau is a simple zero-

point offset (as seen in section 3.1.3), which is entirely expected for any differential data.  

This is wholly inconsequential because the solutions to the Baade-Wesselink and Balona 

methods require only differences in magnitude in their solution, which thereby negates the 

need for knowledge of the zero-point and the need for full photometric zero-point 

standardization.  This is clarified in the chapters on the Baade-Wesselink and Balona 
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methods.  Lastly, the times of observation were all converted to the heliocentric frame using 

standard algorithms25, and Appendix B contains the complete listing of the reduced 

photometric data. 

                                                   

25 As such found in The Astronomical Almanac; see Appendix A for a Matlab script. 
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3.1.2  Procedures in Periodicity, Phasing, and Epoch Determination 

 

 With data reduced to differential magnitudes it is possible to determine the 

periodicity of the variations, assuming they are uniform.  Certainly, periodicity has no 

meaning for non-uniform variations and in that case one might be more interested in the 

frequency components of the pulsation instead.   We begin by finding an estimate for the 

period by performing Fourier fits of various orders to the differential magnitude curves vs. 

their heliocentric Julian times of observation.  Any data reduction package worth its merit 

can readily perform these fits instantaneously and visually, as is the case for Matlab.  The 

data must be treated interactively because it is difficult to determine which order of fit (in 

this case a Fourier fit) is the best to use for representing the data.  Similar to fitting higher 

order polynomials, the higher the order of Fourier fit the greater the number of data points 

the fitting curve will pass through, reducing the root-mean-square scatter of data points 

about the fit.  This cannot be interpreted to mean, however, that higher orders produce 

better quality fits – it is quite the contrary.  It is up to the researcher to determine the best 

order fit through interactive, visual analysis.  Fourier fits are especially dangerous as high 

orders can produce beats and resonances which are physically completely nonsensical.  

Figure 3-5 shows that reasonable Fourier orders give a period of around 3.146 days, and this 

can be used as a starting point for a more detailed analysis.   
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Figure 3-5:  Sample of 3 Fourier fits to the U differential light curve. 

 

The data are then phased using  

HJD HJD
floor

Period Period


 
   

 

26,                                       (3.12) 

where   is the phase which will vary between 0 and 1, HJD is the Heliocentric Julian Day, 

and the period is the initial estimate found above.  The data are now Fourier-fitted at various 

orders in order to determine the best order.  One should choose a fit of high enough order 

                                                   

26  The “floor” function is simply the integer part of its argument.  This form of the phase equation temporarily 
ignores the epoch starting point.   
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so that the low amplitude frequencies are accounted for, but of a low enough order so that 

high frequency components are not inadvertently introduced (as can be seen for Fourier 

order 6 in the last figure). 

   

 
Figure 3-6: Fourier Order 4 seems to be the best choice of order to represent the phased data. 

 

 The top panel of Figure 3-6 illustrates how fitting with too few frequency 

components in the low order Fourier fit does not adequately represent the data, as there is 

noticeable skew between the fitting curve and the data in the region bracketing 0.8 phase.  In 

the bottom panel, fitting with too many frequency components creates the oddly shaped or 

„out-of-round‟ curve observed in the data gap surrounding 0.68 phase, which one has no 

physical reason to expect.  The periodicity is also not well reproduced in that the curve does 
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not return to the same values at 0 and 1 phase.  The center panel of Figure 3-6 shows a 

satisfactory Fourier fit of order 4, adequately modeling the data as well as properly 

reproducing the periodicity.  The fits were not constrained in period in the above analysis; at 

this point we are only determining the best Fourier order to use for the representation of the 

data.  An arguably more quantitative method for determining the correct order for the 

Fourier fit is to examine the error on the fit parameters: when the order of the fit is too high, 

the higher order coefficients will not be significant as compared to their errors.  This method 

would lend itself very well to automation inside a computer program. 

 With an appropriate Fourier order selected, it is possible to determine a much more 

accurate period for the star‟s cycle of pulsation.  A range of periods of 101 points, spanning 

0.05 days and bracketing the initial period estimate of 3.146 days, are used to re-phase the 

data and Fourier fits of the chosen order are determined for each.  The periods are highly 

constrained (to 
1210 ) in the Fourier fit in order to force the fit to use each period as its 

fundamental frequency.  For each of the periods and their Fourier fits, the summed RMS27 

of the residuals is recorded and the sequence of these is plotted against their corresponding 

period.  The trend of the RMS verses period graph will have a minimum at the best fitting 

period, and Figure 3-7 shows an example for the U passband.  Essentially, the period which 

phases the data to the least RMS scatter about the fit is assumed to be the period which best 

models the pulsation. 

                                                   

27 RMS is the root-mean-square. 
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Figure 3-7:  RMS vs. Period.  The minimum of the trough in the top panel gives the period of least squares fit.   

 

 Data sets which cover a much larger number of epochs (as illustrated in Chapter 1.2) 

typically have a much more sharply defined minimum in the RMS vs. period curve than that 

found in the top panel of the above figure.  This lends credence to the possibility that epoch-

to-epoch variations in period may be quite real and much larger than the variations in 

average period over a large number of cycles (see the discussion following the table on page 

22).  A sharper minimum vertex allows for a smaller bracketing range of the 101 periods, and 

therefore, smaller spacing between RMS evaluations and a (presumably) better determined 

minimum.  Too small a bracketing range, however, will in all cases produce random point-

to-point noise in the RMS vs. period curve of such a magnitude as to render it impossible to 
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fit.  In any case, the plot of RMS vs. period is typically quite pathological, making it difficult 

to fit with an analytic function; polynomials of even 10th order are inadequate.  It is 

important to properly fit the curve with a function because one must then use that function 

to find its minimum, using some minimization algorithm.  Cubic spline interpolating 

polynomials have been found to work best, and Matlab can readily create and then minimize 

the polynomial structure to any arbitrary precision.  The procedure is carried out for each of 

the five UBVRI light curves, and the mean and standard deviation of the results are used as 

the period and its error.  The results for the UBVRI data from MLO are shown below in 

Figure 3-8 and tabulated in Table 3-4.   

 

 
Figure 3-8:  Least-squares period for the UBVRI passbands. 
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Filter Period (days) RMS of Fit (mags) 

U 3.146145 0.0074 

B 3.150372 0.0065 

V 3.149550 0.0059 

R 3.152765 0.0062 

I 3.145097 0.0073 

Average 3.1488 ± 0.0033 - 

Table 3-4:  UBVRI passband periods.28 

 

 The results of the least-squares-period fitting procedure, performed on all passbands 

of 5 epochs of variation, shows relatively significant scatter.  However, the average period (i.e., 

the period over a large enough number of cycles) for each passband should obviously all be 

identical, or else a phase discrepancy would build up between the passbands until each varied 

in brightness in completely nonsensical ways - for example U brightening with B dimming.  

This would not be expected behaviour for a pulsating star, nor for any other object which 

varies isotropically and monotonically with temperature.  Therefore, the variation of period 

with passband as seen in Figure 3-8 must originate from scatter which is in some way 

intrinsic to the data, and so the standard deviation of the periods will be the highest accuracy 

we can hope to obtain for that quantity from this particular data set.  It is clearly possible 

that the different periods are simply due to basic experimental error introduced by the 

photometry.  But it is not impossible that, on the time scale of one to several pulsations, 

there can be real variations in period between passbands, given that different filters peer to 

                                                   

28 The period-finding algorithm does not allow errors of determination to be computed for each passband. 
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different depths in the radiative photosphere.  In his definitive work on stellar photospheres, 

Gray (1992) shows that flux in different filter passbands form at non-commensurate optical 

depths, such that bluer light generally forms in regions of higher temperature deeper in the 

photosphere, compared to redder light which forms higher in the photosphere where it is 

cooler.  Because the surface gravity of a Cepheid supergiant star is quite low, the range in 

optical depth of the formation of the continuum corresponds to a significant range in 

geometric depth as well.  Only loose coupling between the photospheric layers can be 

expected given that they are relatively rarified and geometrically quite deep.  There is at least 

a possibility, then, of epochal variations in reaction time and behaviour of each passband 

layer to the driving pulsations coming from the ionization pumping region below.  This is an 

issue clearly worthy of further study both observationally and theoretically, and would be a 

unique extension to the study of Cepheids for stellar astrophysics.   

The mean and standard deviation of the data plotted in Figure 3-8 give the resulting 

period estimate and its error, 

 3.1488 0.0033 P d  ,                                             (3.13) 

and it is this value that will subsequently be used for the remainder of this study.  The error 

of 0.0033 days on the period estimate is 4m45s. 

 It is common practice to phase the light curve data of pulsating stars such that the 

time of maximum brightness corresponds to zero phase.  This requires the determination of 

an epoch for the light curve and introduces a modification to equation (3.12); it now takes 

the form 

 
 HJD epoch HJD epoch

floor
Period Period


  

   
 

.                              (3.14) 
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 The V passband is chosen for the determination of the epoch.  In published 

literature normally only one epoch is specified and it is usually from the V passband, 

although we will see in this work that the epoch actually differs for different filter passbands.  

Most authors do not cite in which passband their epoch was determined.  The data are re-

phased using the period found above (3.13) and a Fourier fit of appropriate order (in this 

case, 4) is determined.  The minimum of this Fourier fit (i.e. the maximum brightness) and 

its corresponding phase can be found to an arbitrary degree of accuracy using numerical 

search techniques, and the subsequent Julian Date is determined through comparison of this 

phase to that of a phase with a known Julian Date from the data.  The epoch is thus 

determined as  

 min 0 0( )epoch P HJD     (3.15) 

where min  is the phase of the Fourier-fit minimum (i.e., maximum magnitude), and 0  and 

HJD0 are a matching phase and heliocentric Julian Date from any point in the real data 

respectively, and P is the period.  The returned value plus or minus multiples of the period 

can be used as the epoch, but it should be specified within or very near the dates of the 

observations in order to avoid the error propagated by the period.  The result for the V 

passband near the end of the observation run was thus  

  0.0023

 0.0038   2,453,316.5166 Vepoch HJD  . (3.16)                                   

The error limits on the epoch were determined by re-phasing the data at the limits of the 

error on the period, re-fitting new Fourier curves with the new phases, and determining the 

difference of the new epochs from that of using the mean period. 
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This procedure was done for the other 4 filters, and their differences from the V 

epoch are shown in Figure 3-9 and listed in Table 3-5.  The differences are well above the 

error in the determination of the period and the epoch, and varies little upon variation of the 

fitting routines as described above.  This epoch lagging29 of the passbands is a phenomenon 

not well discussed in any of the literature.  Berdnikov & Pastukhova (1995) report on 11 

Cepheids for which they performed O-C analyses, and in table 3 of their work they list 

“phase correction(s) to the standard light curve in the B band to make it coincident with the 

standard light curve in the V band...”.  Out of the more than 120 references in this thesis, 

their statement appears to be the most any author has had to say on the subject of epoch 

lagging between passbands.  It implies that the data are supposed to be re-phased with the 

added correction, and that this is even a standard procedure.  It would be a rather ad-hoc 

change to make to the data and is demonstrably an incorrect thing to do on several counts:  

First, there is the obvious objection of introducing such a change to the data without giving 

clear justification or reasoning - none is given.  Second, following the previous discussion on 

photospheric passband stratification and that the driving pulsation occurs well below the 

photosphere, it is quite likely that the different passband layers mechanically react through a 

sequence of times as the pulsation passes through one layer to the next - there is no clear 

reason to expect that all layers will react simultaneously.  And third, aside from any insight 

into the internal astrophysics of stellar photospheres, there is the very simple fact that the 

total brightness of a star is the product of its surface brightness and surface area.  Because 

the surface brightness variations obviously have different amplitudes in different passbands, 

                                                   

29 Epoch lagging in the sense used here, and phase lagging, are terms usually used interchangeably.  However, it 
is more accurate to call this phenomenon epoch lagging only, as phase lagging should imply changes in period 
which then give rise to differences in phase. 
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whether or not they originate from geometrically different layers, they will combine uniquely 

with the stellar surface area variation to produce curves which all maximize at unique times.  

If one considers that the effective surface area of the star may also be unique for each 

passband given photospheric stratification, the case is made more clearly.  SZ Tau‟s nearly 

sinusoidal variation in light lends a simple starting point for modeling such pulsations, and 

this will be discussed in Chapter 5. 

 

 
Figure 3-9:  UBVRI passband epochs.  There is a significant amount of epoch lag between filter passbands. 
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Passband Epoch Difference from V 

U 
0.0123

0.01172,453,316.4423    -0.0743 

B 
0.0135

0.01232,453,316.4323    -0.0843 

V 
0.0023

0.00382,453,316.5166    0 

R 
0.0000

0.00082,453,316.5637    0.0471 

I 
0.0028

0.00152,453,316.5912    0.0746 

Table 3-5:  The UBVRI epochs with all passbands phased to the same period. 
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3.1.3  Fourier Representations for the Light and Colour Index Curves 

& Comparison to Published Data 

 

 With the period and epoch of the stellar variations determined and a Fourier order 

selected which best represents the data, we can create Fourier functions for the differential 

light curves and then use those to create the colour index curves.  Fourier functions will also 

be used for representing the radial velocity data, and these will all subsequently be used in 

the Baade-Wesselink and Balona analyses.  Using such curves greatly simplifies the analysis 

because data values can then be calculated at any arbitrary and corresponding phase points in 

the light, colour, and radial velocity data.  And it can be reasonably argued that this will 

produce the same results as if the individual data points were (somehow) used in their 

original form, because minimization of scattered data points should give the same result as 

minimization of a curve which is the average of the original data points.  The UBVRI 

differential magnitude curves and their Fourier fits are shown in Figure 3-10.  
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Figure 3-10:  SZ Tau UBVRI light curves. 

 

A table of 4th order Fourier coefficients and their ninety-five percent confidence 

intervals are presented in Table 3-6.  The Fourier polynomial takes the form  

 0 1 1 2 2

3 3 4 4

( ) cos( ) sin( ) cos(2 ) sin(2 )

cos(3 ) sin(3 ) cos(4 ) sin(4 )

dM a a b a b

a b a b

    

   

    

   
 (3.17) 

where the angular frequency ω is set to exactly 2π because the data has already been phased 

by the average period, and φ is the phase. 
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Coefficient dU dB dV dR dI 

a0 0.0721 
± 0.0028 

-0.4042 
± 0.0025 

-0.7231 
± 0.0023 

-0.9021 
± 0.0025 

-1.1171 
± 0.0030 

a1 -0.3108 
± 0.0024 

-0.2545 
± 0.0021 

-0.1704 
± 0.0020 

-0.1347 
± 0.0020 

-0.1051 
± 0.0024 

b1 0.0446 
± 0.0037 

0.0266 
± 0.0033 

0.0067 
± 0.0031 

-0.0006 
± 0.0033 

-0.0073 
± 0.0038 

a2 0.0093 
± 0.0023 

0.0001 
± 0.0020 

-0.0002 
± 0.0019 

0.0006 
± 0.0019 

0.0011 
± 0.0023 

b2 0.0063 
± 0.0032 

0.0098 
± 0.0020 

0.0080 
± 0.0019 

0.0061 
± 0.0019 

0.0063 
± 0.0023 

a3 -0.0032 
± 0.0016 

0.0024 
± 0.0028 

0.0025 
± 0.0026 

0.0011 
± 0.0028 

0.0012 
± 0.0032 

b3 -0.0081 
± 0.0007 

-0.0051 
± 0.0014 

-0.0039 
± 0.0013 

-0.0043 
± 0.0014 

-0.0024 
± 0.0016 

a4 0.0038 
± 0.0020 

0.0042 
± 0.0017 

0.0031 
± 0.0016 

0.0012 
± 0.0017 

0.0014 
± 0.0020 

b4 0.0006 
± 0.0021 

-0.0009 
± 0.0018 

-0.0028 
± 0.0017 

-0.0023 
± 0.0018 

-0.0025 
± 0.0021 

 Table 3-6:  Coefficients for the Fourth Order UBVRI Fourier Curves. 

 

 Colour index curves can be created through the simple subtraction of these 

coefficients from one passband to the other.  The usual U-B, B-V, V-R and R-I colour 

indexes are plotted in Figure 3-11.  These colour indexes are not fully standardized as they 

were formed via subtraction of differential light curves, so though they are on the correct 

magnitude scale they do not have the correct zero point.  Again, this is not a problem 

because both the Balona and Baade-Wesselink methods require knowledge of only the 

positions (i.e., phases) of equal colour index magnitudes and so differential photometry and 

colour indices are sufficient. 
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Figure 3-11:  Differential colour index curves from subtraction of the Fourier-fitted light curves. 

 

 In Figure 3-12 the U-B, V-R, and R-I colour index curves have been scaled to the B-

V curve through linear least squares.  In comparison to the scatter about the Fourier fits of 

the original differential magnitude data, the dispersion of the mean colour index curve is 

quite satisfactory.  An obvious correlation is found in that the dispersion in phase regions 

where the data are dense is the most accurate, while the scaling is more error prone in the 

phase gaps lacking coverage.  Table 3-7 lists the Fourier polynomial coefficients for the 

mean colour index curve and its dispersion. 
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Figure 3-12:  Mean colour index curve.  The colour index curves scale very well to each other.  Regions of poor 

coverage at 0.5 and 0.8 phase have expectedly larger error. 
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Coefficient Mean Colour Error Curve 

a0 0.3189 0.0066 

a1 -0.0828 -0.0005 

b1 0.0204 -0.0041 

a2 0.0025 -0.0009 

b2 0.0002 0.0006 

a3 -0.0012 0.0015 

b3 -0.0024 0.0010 

a4 0.0011 0.0006 

b4 0.0009 -0.0020 

a5  -0.0028 

b5  0.0007 

a6  -0.0001 

b6  0.0006 

a7  0.0003 

b7  0.0003 

a8  0.0004 

b8  0.0001 

Table 3-7:  The mean colour index curve for SZ Tauri.30 

 

                                                   

30 .  The mean colour index curve is exactly represented by a 4th order Fourier polynomial.  The dispersion 
function requires an 8‟th order fit to adequately represent it. 
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 Both Figure 3-11 and Figure 3-12 show that the colour index maximizes before the 

light.  The epoch for the mean colour index is 

 
0.0056

0.0037
  2,453,316.3932  MeanColourepoch HJD   , (3.18) 

0.1234 days or 0.0392 phase before the V passband, which is actually earlier than any of the 

passbands31.  This connects to the previous discussions on passband epoch lagging in a very 

relevant way.  That the passbands have generally the same profile in their variation in light 

but lag each other by some small amount, it automatically requires that the colour index 

between them will maximize at a different time than either of them, either before or after 

depending on the direction of the subtraction.  If generally B-V is reflective of effective 

temperature and through it the effective surface brightness, one must indeed expect the 

colour index to maximize at a time earlier than the light because the surface area maximizes 

after the light.  Epoch lagging is then an expected and fundamental prerequisite, but see 

Chapter 5 for a complete discussion. 

Moffett & Barnes (1980) have good standardized Johnson BVRI data of SZ Tau 

taken between April 1977 and December 1979.  The two corresponding passbands to the 

MLO data (i.e. B & V) show an extremely good match, aside from linear offsets to shift the 

differential MLO data to the standard system.  The comparisons are shown in the next three 

figures below.  Barnes et. al. (1997) have further BVRIJHK photometry of SZ Tau from 

later epochs, but these data turn out to suffer from an error in the determination of the 

epoch, so that the data are shifted by approximately 0.1 phase.  This is due to a large gap in 

                                                   

31 The error on the epoch of the mean colour index was determined by re-phasing all data to the limits of the 
error in the period (epoched using the corresponding V epoch), forming  new mean colour index curves at 
those limits, and then finding the minimum of the curves.  In both cases, the epoch of the mean colour index 
moves slightly earlier in phase. 
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their photometry of 0.2 phase in width at the maximum of the light curves, which led to a 

poor determination of the time of maximum light - the problem is not noticed in their paper 

however.  When shifted in phase it matches with what is shown below. 

 

 
Figure 3-13:  Moffett & Barnes vs. Postma Johnson B light curve. 
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Figure 3-14:  Moffett & Barnes vs. Postma Johnson V light curve. 

 

 
Figure 3-15:  Moffett & Barnes vs. Postma Johnson B-V light curve.  The colour excess has not been applied. 



72 

 

 

 

Gray (1992) gives a polynomial to convert from B-V magnitude to effective 

temperature 

 

2 3

0 0 0

4 5 6

0 0 0

log( ) 3.988 0.881( ) 2.142(( ) ) 3.614(( ) )

3.2637(( ) ) 1.4727(( ) ) 0.26(( ) )

effT B V B V B V

B V B V B V

       

    
 (3.19) 

Applying Turner‟s (1992) careful determination of EB-V = 0.29 for the colour excess, 

equation (3.19) results in the temperature curve in Figure 3-16 below, and gives a mean 

effective temperature of 6021 K.  SZ Tau‟s average luminosity32 of log 3.33
Sun

L

L
  classifies 

it as a class Ib supergiant, and so its spectral type varies between about F6 at the hottest to 

F9 at the coolest, averaging F7.5.  Sanewal & Rautela (1989) report a temperature variation 

which is offset several hundred degrees higher than that reported here, based on comparison 

of their data to the model atmospheres given by Kurucz (1979).  However, they used a 

colour excess of EB-V = 0.31 and so this accounts for most of the difference.   

 

                                                   

32 Calculated using the average Balona radius determined later in this work, and the mean of the temperature 
curve in Figure 3-16.  L = 4πσT4R2. 
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Figure 3-16:  Effective temperature curve for SZ Tau.   

 



74 

 

 

 

3.2  Spectroscopic Reduction and Radial Velocities 

 

3.2.1  Spectra from the Dominion Astrophysical Observatory 

 

 Moderate resolution spectroscopy was obtained for SZ Tauri during a two-week 

observing run at the DAO33 from October 02 through October 15, 2003.  The Plaskett34 72” 

(1.85m) f/18 Cassegrain mounted spectrograph was used with a SITe-235 CCD detector.  

The SITe-2 is a thinned, UV coated 532x1752 15 micron pixel CCD chip.  It has a readout 

noise of approximately 12 e-/pixel, a gain of 1 e-/ADU36, and a quantum efficiency (QE) of 

35% at 4000Å.  The spectrograph was used in configuration 21121B, referring to use of the 

21” focal length camera and a 1200 L/mm grating used in the first order with a peak blaze 

efficiency on the blue side of the visible spectrum.  The reciprocal linear dispersion is 

nominally 15 Å/mm.  No image slicer was used at the spectrograph entrance slit, which was 

set to 9 thousands of an inch or 1.4 arc-seconds on the sky. 

 Only ten data points were obtained for this star during the observing run because 

inclement weather ruined many nights of observation.  The data were distributed at only 

three points in phase occurring at φ = 0.2, 0.65 and 0.85.  Therefore, for the purposes of this 

study, archival radial velocity data have been used.  The reduction procedures for the spectra 

                                                   

33 Dominion Astrophysical Observatory, Victoria, B.C. 
34 Named after John S. Plaskett, founder of the Victoria location DAO, 1913. 
35 SITe is a CCD manufacturing company, a descendent company from Tektronix  
36 ADU: analogue to digital unit 
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and the extraction of the radial velocities will still be discussed presently, however.  The ten 

points that were obtained fit well with the older published data (see Chapter 3.2.3).  A 

graphical user interface (GUI) software program written by the author called CCDRED37 

was used to reduce the CCD data; it can reduce both spectroscopic and photometric image 

data.   

The first step in reducing a CCD image is to create a master “bias” frame38 for 

subtraction from all images.  A bias is a zero second39 exposure for calibrating the chip‟s 

electrical charge offset which the CCD acquires as it initializes for an exposure.  The offset 

presents a zero-point background, typically 1/60th the dynamic range of the chip, and which 

must be subtracted from each real data frame.  In high quality and especially modern CCDs 

the bias is usually quite uniform across the field, and in this case one can use the global mean 

or median value of the entire bias matrix for subtraction from the image data frames.  This 

should increase the signal to noise ratio (SNR) in the final image because it avoids 

introducing the read noise from the bias image into the reduced one -  subtracting the entire 

bias frame from the image frame would increase the noise level in the reduced image 

through quadrature addition of the read noises from the two frames.  If the temperature is 

stable, and failing any hardware troubles, the global median of the bias will remain constant.   

Older CCD chips usually suffer from broad scale non-uniformity in the bias 

structure.  This necessitates the collection of around a dozen, or even several dozens, of bias 

frames every night of observation.  The bias level and its structure are quite sensitive to 

                                                   

37 See footnote 23. 
38 The terms “frame”, “image”, “matrix” and “data” are used interchangeably.   
39 Commonly, CCD control software allows one to enter zero as an exposure time, but the hardware actually 
uses the fastest “blink” time that it can, which is of order 10ms.  The shutter is closed for the exposure. 
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temperature variations, so that even through the course of a night of observations the bias 

level can vary significantly if the CCD chip is not properly cooled and insulated.  In some 

cases, taking samples of bias throughout the night is warranted, depending on the nightly 

temperature fluctuations and the cooling method of the CCD hardware.  Standard 

thermoelectric Peltier coolers cool only relative to the ambient temperature of the 

surrounding air, and they do not cool efficiently much further than 35 Celsius below 

ambient.  At this relatively high temperature the bias (and the dark current…see following) is 

extremely sensitive to thermal variations.  Cryogenic cooling with liquid nitrogen (LN2) is far 

superior, if the telescope and its corresponding hardware configuration allow it.  LN2 will 

hold the chip at a constant temperature independent of external thermal variations, and this 

temperature is so low that the bias level can be kept fully constant (and the dark current 

close to zero).  Nitrogen exists naturally in its liquid state near -1800 C, so usually a small 

heating element is placed against or near the CCD chip to raise it to a temperature of around 

-1250 C, in order to ensure optimal quantum efficiency of the photoelectric material.   

 Figure 3-17 below shows the bias structure of the SITe-2 CCD from the DAO.  The 

uniform strip on the right side of the image is the overscan area, which does not represent 

any real portion of the CCD chip.  It is the result of the analogue to digital unit converter 

(ADC) reading off imaginary pixels at dimensions larger than the actual chip, and it can be 

used for comparison to the bias level of the CCD40.  In high quality CCD‟s the difference 

between the overscan area and the bias will be zero, indicating proper functioning and low 

noise of the chip.  In addition to the obvious difference of the bias level from the overscan 

                                                   

40 Not all CCD chip hardware is capable of this functionality. 
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as seen in Figure 3-17, there is also a broad scale variation in intensity across the field.  The 

pixel-to-pixel granulation is the random noise from the readout of the chip (i.e., the read 

noise), and was found to have a value of about 5 counts or 0.2% of the mean.  The larger 

scale, left-to-right gradient variation is about 15 counts or 0.6%.  The image is expanded in 

the vertical direction, and also note that the vertical direction has only 140 pixel rows; this is 

due to on-chip binning of the pixel columns by a factor of 4. 

 

 
Figure 3-17:  A significant large scale variation is seen in this bias.   

 

Because the large scale variation is constant in time (at constant temperature), one 

can improve the signal to noise ratio in the reduced image by using a smoothed 2 

dimensional fit to the bias surface for subtraction from real image data.  Subtraction of the 

raw median bias from an image will incorporate that bias‟ random read noise into the frame, 
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because the image data already contain their own random read noise and so the two noise 

contributions would add in the usual way.  Subtraction of a smooth surface function is the 

equivalent of using the global median from a structure-less bias, and so introduces no 

additional read noise into the reduced image.  If the bias structure proves too unwieldy for 

fitting, the raw bias frame must be used admitting a small loss in the signal to noise ratio. 

 

 
Figure 3-18:  A two-dimensional surface fit can be used to model the large scale bias variation when such a 

variation is smooth and continuous.  The overscan has been clipped from the data matrix. 

 

 Figure 3-18 shows a two-dimensional surface fit and its residuals to the median bias 

frame from the DAO.  The residuals plot in the bottom frame show a purely uniform, 

random variation.  The standard deviation of the residuals of 2.4 counts would be the level 
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of random noise introduced into each pixel of the data frame if the median bias was 

subtracted instead of the surface fit. 

 Another background offset which must be subtracted from the data is the “dark 

current”, sometimes called “thermal” frames, indicative of their sensitivity to temperature.  

At most temperatures the photoconductive material of the CCD will spontaneously emit 

thermal electrons into the CCD pixels, and this presents a further zero-point offset in the 

background.  Cryogenic cooling can keep the rate of thermal emission down to a mere one 

or two counts per hour of continuous exposure.  Thermoelectric Peltier cooling, which is 

much warmer than LN2, can see dark currents of one hundred counts per minute or more.  

Because the cooling was of the former type at the DAO, dark frames were not taken during 

this observing run.  However, the reduction procedure for the dark frames follows 

essentially that of the bias frames.  Each set (of say 11 images) of dark frames must be taken 

with the shutter for the CCD camera closed and for the same exposure time(s) as the image 

data, and most importantly also at the same temperature.  It is theoretically possible to take 

only one set of dark images at a long exposure time, and then simply scale the dark data by 

the ratio of image exposure time to dark exposure time.  However, the author has observed 

that the thermal level does not always scale linearly with exposure time, and recommends to 

take sets of dark frames at each exposure time of the data images.  If the bias and darks are 

being processed separately (see discussion in next paragraph), then the bias must be 

subtracted from the dark before the dark is subtracted from the image because each data 

frame, no matter its purpose or how it was taken, contains the bias.   

It is a matter of contention whether or not it is necessary to perform the bias 

subtraction distinctly from the dark and image data at all, because a dark image is simply 
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Dimage(x,y) = Dcurrent(x,y) + B(x,y), where B(x,y) is the bias.  Because the bias level and its 

variations exist in every single frame and so are already represented within the dark and 

science-image data, it should be sufficient to subtract the dark frame only from the science-

image.  This would avoid multiple introductions of the read noise into the processed data.  If 

the dark frames can also be modeled with a smooth surface fit, then the only random read 

noise in the reduced data will be that already inherent to the science-image. 

 The full subtractive offset corrections to an image I(x,y) are thus 

 ( , ) ( ( , ) ( , )) ( ( , ) ( , ))raw imageoffset corrected
I x y I x y B x y D x y B x y    .  (3.20) 

Quadrature addition of noise is then 

 2 2 2 2( , ) ( , ) 2 ( , ) ( , )offset corrected raw imageI x y I x y B x y D x y      .  (3.21) 

However, equation (3.20) quite simply reduces to  

 ( , ) ( , ) ( , )offset corrected raw imageI x y I x y D x y   (3.22) 

and the noise is then 

 
2 2 2( , ) ( , ) ( , )offset corrected raw imageI x y I x y D x y     (3.23) 

but only if the bias has not been subtracted separately from the raw dark and raw image data.  

If the dark frame has been modeled with a smooth function, then its contribution in (3.23) is 

zero.  If no dark frames were taken because LN2 cooling was used and exposure times short, 

the bias must then still be subtracted.  For our session at the DAO, we assumed that the 

dark current was negligible and so used the bias only for background offset correction41. 

                                                   

41 The author admits this is a very convenient assumption: batches of bias frames are much faster to record, 
and this affects mental reasoning at 6 o‟clock in the morning. 
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 The final correction which must be applied to the data images involves what is called 

a “flat field”.  It is an image which records the sensitivity modulations of the optical train of 

the telescope and detector.  The need for this is two-fold: first, every individual pixel on the 

CCD chip does not have the exact same quantum efficiency (QE) as the others; second, dust 

and “smudges” on the telescopic optics can modulate the intensity of light falling across the 

CCD imaging field.  The latter problem is significant mainly for photometric imaging; in 

spectroscopy, any information regarding telescopic dust and smudging on the optics is 

integrated at the focus of the spectrograph entrance slit, and this makes the formation of the 

flat field image much more simple.  One merely shines a polychromatic source from a 

properly selected, spectrum-less incandescent light bulb onto the entrance slit and then 

images the continuous spectrum.  Flat fielding in photometry is usually more complex, 

requiring imaging of the twilight sky or the imaging of a large white screen attached to the 

inside of the telescope dome, evenly illuminated with a polychromatic light source.  These 

are usually called “sky flats”, and “dome flats”, respectively.  In both cases a major difficulty 

is found in attaining a truly uniform illumination across the imaging field.  Twilight sky can 

have gradients across the image with distance from the sun, moon, or horizon, while dome 

flats are simply difficult to uniformly illuminate.  In all cases, flat field images should be 

exposed to approximately 50% of the dynamic range of the sensor in order to ensure a high 

signal to noise ratio without approaching the saturation level of the CCD chip.   

 The flat field correction is not by subtraction, but by division.  Given a uniform 

source the field sensitivity modulations will produce different count rates in different areas 

of the chip, even though all the rates should have been equal.  The read noise in a flat field is 

negligible compared to its signal, so that the pixel-to-pixel variations are actually due to the 
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quantum efficiency variations of the pixels; these must be corrected from the image and 

therefore a smooth function should not be fit through the flat field. 

Let the image source function, i.e. the function that describes the spatial field 

distribution of the light just before it enters the telescope42, be defined as S(x,y).  Let the 

detector response function which modulates the light according to the sensitivity variations 

inherent to the optical train and detector be R(x,y).  An image I(x,y) can then be expressed43 

as 

 ( , ) ( , ) ( , )I x y S x y R x y  .  (3.24) 

In practice we record I(x,y) but we want S(x,y), so we must therefore divide out R(x,y). 

 A flat field image can then be expressed via the above equations as 

 ( , ) ( , ) ( , )F x y f x y R x y  ,  

where f(x,y) is the flat field illumination source.  However, f(x,y) is a uniform illumination 

source so that f(x,y) = f0, and thus the flat field image is  

 0( , ) ( , )F x y f R x y  .  (3.25) 

If equation (3.25) is normalized44 by dividing by its mean (or possibly median) value we have 

 

( , )

( , )
( , )

( , ) /
n

x y

R x y
F x y

R x y N





,  (3.26) 

where N is the number of pixel elements.  Dividing (3.24) by (3.26) then leaves 

                                                   

42  This would be the case for photometry.  For spectroscopy, it is the distribution in light just after leaving the 
grating. 
43  Assuming the background offsets have already been applied. 
44  “Normalizing” means to force a value or average of values to be equal to 1. 
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( , )

( , ) ( , ) ( , )

( , )
( , ) / ( , ) /

n

x y

I x y S x y R x y

F x y
R x y R x y N






 
 
 


.  (3.27) 

Because R(x,y) appears in both the numerator and denominator on the right side of (3.27) its 

modulating effects are cancelled out, leaving only the original source S(x,y).  And because the 

denominator as a whole has been normalized, the total flux on the right hand side is 

preserved.  The uniformity of the flat field f(x,y) = f0 is clearly paramount in order to be able 

to properly correct for the sensitivity variations of R(x,y) across the field of the CCD chip.  

In practice, the flat field image is reduced by offset correcting through equation (3.20) or 

(3.22) and then dividing by its mean (or median) as in (3.26) 

Figure 3-19 shows a median flat field from a batch of 11 images from the DAO.  

The granulation in the plots are due to the random variations of pixel-to-pixel quantum 

efficiencies.  The dispersion axis of the spectrograph is in the horizontal direction of the 

image.  Because CCD quantum efficiency varies with wavelength the broad horizontal 

variation in the flat field is expected, particularly because such a large range in wavelength 

(400Å) was imaged.  The vertical variation was not expected, but could be due to improper 

alignment or illumination of the spectrograph entrance slit by the flat field source.  The 

vertical artifact visible at the last quarter of the top image is due to an unresponsive or „dead‟ 

pixel column.  
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Figure 3-19:  Median of eleven flat field images.  The field has been normalized. 

 

We can now fully express a raw image as  

 ( , ) ( , ) ( , ) ( , ) ( , )I x y S x y R x y D x y B x y    , (3.28) 

where S(x,y) is a real image from the sky45 and R(x,y) is as above, D(x,y) is the dark current 

and B(x,y) the bias offset.  Solving simply for the science data S(x,y) one has for the reduced 

data 

 
( , ) ( , ) ( , )

( , )
( , )

I x y D x y B x y
S x y

R x y

 


.

 (3.29) 

The numerator is offset-corrected according to the principles discussed before equation 

(3.20) and the denominator is the offset-corrected normalized flat field from equation (3.26). 

                                                   

45 Or grating. 
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 Figure 3-20 shows an image of the raw spectrum of SZ Tau.  The image has been 

clipped to the same dimensions as that of the surface fitted bias and the flat frame, and those 

corrections have been applied to it in kind.  Note that the region of the chip where the 

spectrum falls is in a very narrow horizontal band; this is the star light dispersed from the 

grating and its height is due to the seeing disk of the star projected through the spectrograph 

optics and onto the chip.  The speckles are due to cosmic ray events and spurious hot pixels. 

 

 
Figure 3-20:  Pre-reduced CCD image of the spectrum of SZ Tau. 

 

 Obviously, the regions in the image above and below the spectrum where no useable 

data are found must be clipped from the data matrix.  In spectroscopy mode CCDRED 

accomplishes this by overlay-plotting all of the pixel columns from the image onto the same 

axis, as seen in Figure 3-21.  The user then identifies the relevant portion of the data with the 
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mouse.  An alternative automated routine could be developed which identifies all data rows46 

above a user defined SNR, but this simple method has not yet been implemented. 

 

 
Figure 3-21: The pixel columns from Figure 3-20 are plotted one over the other in this column overlay plot.  
The spike at row 100 is due to a hot pixel or cosmic ray event, and is extraneous to the spectral data.  The 

“fuzzy” wings are due to the low SNR of the flat field in that area. 

 

If the data regions with no signal are relatively uniform in both intensity and noise 

level (which would be difficult to argue for Figure 3-21), the average level could perhaps be 

employed as a background estimate for the combined effects of sky and internally scattered 

light in the spectrograph, and that value could be subtracted from the data as well.  This 

would be important when precisely measuring spectral line depths or integrated absorption. 

                                                   

46 “Rows” in the sense of Figure 3-20. 



87 

 

 

 

 In Figure 3-22 the extraneous data regions have been clipped from the image, leaving 

only the spectrum.  The spectral data lying in the rows at the extremities of the pixel row 

plot (top panel) correspond to the spectral profiles of low intensity in the pixel column plot 

(bottom panel), and vice-versa.  One ultimately wishes to reduce the two dimensional image 

into a one-dimensional spectrum, so the eight rows of spectral data which are left after 

clipping should be averaged together to form the single line spectrum.  However, it is clear 

that each row of data has a different average signal to noise ratio.  Therefore, if each spectral 

row is weighted by its average SNR, their weighted mean will give an optimized result for the 

single line spectral profile.   

 

 
Figure 3-22:  Eight rows of data are left after clipping the extraneous portions from the plot in Figure 3-21.   

 



88 

 

 

 

 Looking closely at the bottom panel in Figure 3-22 it is apparent that not every row 

of spectral data mimics the other‟s large scale variations, i.e., those variations occurring over 

a much larger scale than the average scale of variation due to spectral absorption features.  

The cause of these variations are most likely due to the un-evenly illuminated flat field image 

as noted above.  Because in general it is not known which spectral row will best reflect the 

actual large scale variation due to the stellar flux profile, it can be assumed that the one with 

the highest average SNR does.  Low order polynomials can then be fitted through each 

spectral row, and their ratios to the fit through the highest SNR row can be used to de-skew 

the coarse variations.  After each row is de-skewed and weighted the average spectral profile 

is computed, and this is shown in Figure 3-23. 

 

 
Figure 3-23:  Fully reduced spectral profile for SZ Tau.  The spectrum has been normalized to continuum 

points and has been divided between the upper and lower panels. 
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 CCDRED can be used to normalize a spectral profile through either manual user 

input or an automated routine.  In manual normalization the user selects continuum points 

by lining up the vertical mouse cross-hair in the horizontal position of the continuum point, 

and then pressing the left mouse button.  Once at least two points are selected, a cubic spline 

is fitted through the selection points so that the user can visually determine whether or not 

the spline satisfactorily imitates the general trend of the continuum emission.  If an 

erroneous point is selected which causes the spline to deviate too wildly from a smooth 

trend, the right mouse button can be clicked which will deselect the last point.  In this mode 

the user also has the option to overlay a sequence of fully reduced spectra and ensure that 

each spectra is normalized to the exact same continuum points, granted that there be little 

Doppler shifting between individual spectra within the sequence.  The automated routine, on 

the other hand, divides the spectrum into a (still user specified) number of bins, and then 

selects the second or third highest maximum value47 within each bin as the continuum point 

for the bin. Again, a cubic spline is used to fit the points.  The automated routine will not 

ensure that the same continuum points are used for each bin, and it can also have difficulty 

when there are very wide absorption features such that the bin width is too small to contain 

a continuum point, as can easily happen in the calcium H and K absorption line region seen 

in Figure 3-23.  Spectra with wider spacing (and hence more continua) between lines are 

normalized quite well with the automated routine, and it also takes less time to perform.  In 

either case, after the cubic spline is formed, the spectrum is divided by it and this normalizes 

the points in the continua to unity.  And if necessary, the process can be iterated. 

                                                   

47 The second or third highest value is used instead of the maximum value, since the maximum point will in 
general be due to a noise fluctuation. 
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   The spectral dispersion can in principle be determined through measurements of the 

pixel positions of the stellar absorption features in Figure 3-23.  However, comparison lamps 

were taken for calibration of the radial velocity measurements and so these have been used 

instead.  Iron-Argon (FeAr) emission lamps were taken in pairs bracketing each stellar 

exposure in order to calibrate the spectrograph flexure as the telescope tracked an object 

across the sky (this will be discussed in the next section).  Figure 3-24 shows the emission 

profile of the FeAr emission lamp after reduction by CCDRED, and Figure 3-25 shows the 

spectral dispersion. 

 

 
Figure 3-24:  Fe-Ar spectrum.  The spectral dispersion can be calibrated though measurements of the Fe-Ar 

emission lines.  Line identifications are in Angstroms. 

 



91 

 

 

 

 
Figure 3-25:  Quadratic fit through the pixel positions of fourteen identified emission lines.  

 

 The equation in the top panel of Figure 3-25 gives the distribution of wavelength 

with pixel column position across the chip; the spectral dispersion (in Å/pixel) is the rate of 

change of this equation.  Although the coefficient of the second order term is quite small, 

including the term amounts to an angstrom of difference between the edges of the chip as 

compared to using only the linear terms.  The mean spectral dispersion - the spectral 

dispersion at the centre of the chip - with the difference of the spectral dispersion at the 

extremities of the chip as its deviation is then  

D = 0.23913 ± 0.00092 Å/pixel = 17.502 ± 0.067 km/s/pixel.               (3.30)48 

Because the pulsational radial velocity variation of SZ Tau is known to have an 

amplitude in the range of 20 km/s, a maximum Doppler shift just under 1 pixel (or 0.24 Å) 

                                                   

48 Wavelength can be converted to velocity through equation (3.31) for Doppler shift, discussed in the next 
section.  
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is expected.  Therefore, a given spectral line's sampling dispersion will have a maximum 

variation on the order of 1x10-6 Å or 7 cm/s, an altogether negligible concern.  This will 

allow the use of very simple cross-correlation techniques in determining the spectral 

Doppler shifts.  Also, if it can be assumed that cross correlation techniques can register 

Doppler variations on the order of a tenth of a pixel, then an accuracy of 1km/s can be 

expected in the determination of the radial velocities. 
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3.2.2  Procedures in Radial Velocity Variability Detection and 

Analysis  

 

 Radial velocities are measured via the Doppler variation of spectral lines, which 

manifest themselves through positional changes in the location of spectral absorption 

features on the CCD image.  Doppler shifts arise when an object emitting (or reflecting) 

light is not in a radially stationary position relative to the observer measuring the light.  This 

occurs via any of several processes, including the binary orbit of two stellar companions, 

pulsation of the photospheric layer of a stellar surface, or the recessional velocity of distant 

galaxies, among many others.  In the last case the Doppler shift is more or less constant, 

whereas for the former two the shift is of a variational nature.  In the case of variable stars it 

is due to the periodic radial expansion and contraction of the photosphere.   

If the spectral dispersion of the data is known (as discussed in Chapter 3.2.1), then 

the wavelength Doppler shift ∆λ is related to the velocity v of the source by  

 
v

c







, (3.31) 

where λ is the rest wavelength of the spectral line and c is the speed of light in vacuum.   

 The first spectral Doppler shifts were measured through line-positioning techniques 

on photographic plates.  In this case a binocular microscope (or perhaps even by eye and 

ruler) would be used to measure the centroid of a spectral line on the plate, and a sequence 

of these measurements on a batch of spectral data would yield the relative variational 

Doppler shifts.  The positions of identified spectral features could then be compared to 
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those from a test source situated in the laboratory, allowing absolute calibration of the radial 

velocities with respect to the observer.  Measurement of the positional shifts of multiple 

lines on each plate would allow for the formation of a mean value and an associated error of 

measurement through its standard deviation.  Now automated, techniques such as this are 

used fruitfully in the digital era.  Other methods have become widespread with the advent of 

high-speed computing, such as the cross-correlational method which is used and discussed 

presently.   

 For discreet functions, such as those pertaining to digital spectra of an integer 

number of elements, the cross-correlation can be expressed as  

  
 

1
*

0

*

0

0

N m

n m n

n
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


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 
  


, (3.32) 

where * indicates the complex conjugate (but because both „x‟ and „y‟ are real the complex 

conjugates can be ignored).  Equation (3.32) does not lend itself well to interpretation.  

However, cross-correlation is also called the sliding dot-product, and this is because the 

functional effect is to “slide” the sequence x over the sequence y in integer steps, where the 

dot-product of corresponding elements (i.e. elements that lie on top of one another)  is the 

value for the correlation at that particular lag.  The “lag” refers to the difference of the 

positions of elements within the first sequence relative to the corresponding elements in the 

second sequence.  For example, at zero lag the elemental indices of both sequences are 

aligned, and the full dot-product of the two sequences then gives the correlational value.  At 

lag = 1, element 2 in the 1st sequence corresponds with element 1 in the 2nd sequence, 

element 3 in the 1st to element 2 in the 2nd, and so on.  In the first case, element 1 in the first 
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sequence and element N (where N is the length of the sequences, assumed equal) in the 

second do not contribute to the dot-product because they have no corresponding elements 

in the other sequence.  The correlation lags then extend to  (N-1) on either side of zero, so 

that the correlation sequence contains 2(N-1)+1 = 2N-1 elements49. 

 Figure 3-26 shows the cross-correlation between two FeAr (iron-argon) emission 

spectra taken approximately 3.5 hours apart.  Before the cross-correlation was performed 

each spectrum was subtracted by its mean value, and was also multiplied by a cosine-bell 

apodizing function in order to suppress sinc function ringing in the correlation peak wings.  

Near zero lag, where the corresponding emission lines from each spectrum line-up with one 

another, an absolute maximum in the cross-correlation occurs.  The secondary maxima in 

the top panel of the figure are due to the correlation of unrelated emission lines as one 

spectrum is slid over the other.  The 41 lags surrounding the maximum lend themselves well 

to fitting with a Gaussian function, as displayed in the bottom panel of Figure 3-26, and this 

can be used to determine if there was any spectral shifting between the two spectra.  If there 

was zero shift between the two spectra, or if a spectrum was correlated to itself50, the 

maximum of the correlation sequence would occur at exactly zero lag.  A shift in the line 

positions between the two spectra will reflect itself in a shift of the correlation maximum, i.e. 

the center of the Gaussian, from zero lag. 

 

                                                   

49 The addition of 1 is for the value of the correlation at lag = 0. 
50 Self-correlation is commonly referred to as auto-correlation. 
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Figure 3-26:  Correlation sequence of two Fe-Ar reference spectra.  The top panel shows the correlation 

sequence over the entire range of the data, while the bottom panel is centered on the maximum peak and has 
been fitted with a Gaussian. 

 

 The fit parameters in the bottom panel of Figure 3-26 show a pixel shift of dp = 

0.448 ± .002 pixels or dv = 7.84 ± 0.03 km/s.  However, because the correlation was between 

two calibrating FeAr emission spectra, this shift is not due to a Doppler shift of the 

spectrum.  Because the FeAr emission lamps are attached to the spectrograph, their shifts 

actually reflect the instrumental effect of a varying spectrographic geometry. 

Miniscule variations of the optical path arise in almost any type of spectrograph, and 

great effort can be expended in reducing their magnitude.  Floor mounted spectrographs, 

such as those in the Coude configuration, suffer the least variation because they are mounted 

firmly to the ground.  But even nightly temperature variations can still produce spectral 

shifting on the order of one hundred meters per second due to the thermal expansion and 
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contraction of the spectrographic components51.  Telescope-mounted spectrographs suffer 

from a variable gravitational torque52 as the telescope tracks an object across the sky, and this 

can lead to spectral shifting of several km/s, as shown below in Figure 3-27.  Because the 

real stellar Doppler variations are expected to have an amplitude near 20 km/s, these 

pseudo-Doppler shifts of the spectrograph are not insignificant and must be corrected.  This 

can be done by fitting any type of reasonable equation to the FeAr reference lamp shifts as a 

function of time.  In Figure 3-27, a single reference lamp was taken between each stellar 

exposure as the telescope tracked a star across the sky over a period of about 3 hours.  Note 

the continuity of the curve indicative of a smoothly varying gravitational geometry.  

However, if the telescope were moved significantly off-target and then moved back into 

position, one could not be certain that the shifts would resettle into their previous trend.  

Also, if the same target is observed two nights in a row, it is still not certain that the 

spectrographic shifting during the two nights will mimic each other.  Multiple exposures of 

the reference lamps should also be taken between the stellar exposures instead of just one, 

because they are usually bright and therefore impinge very little on the duty cycle.  This 

would allow for true characterization of the internal consistency of this method of flexure 

calibration.   

 

                                                   

51 This statement follows from spectroscopic work the author performed at the University of Western 
Ontario‟s Elginfield Observatory, which houses a Coude spectrograph of resolving power 100,000. 
52 This is also referred to as „flexure‟. 
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Figure 3-27:  Spectrographic flexure as measured through the flexure-induced Doppler shifting of FeAr 

reference lamps. 

 

 The cross-correlational stellar spectral shifts will be a superposition of the 

spectrograph flexure-induced spectral shifts, Doppler shifts due to the orbital and rotational 

motions of the earth, and the real spectral Doppler shifts due to the star‟s intrinsic variable 

motion.  To produce a sequence of radial velocity measurements over time, a single 

reference stellar spectrum and calibrating FeAr lamp (usually the first pair, or perhaps the 

pair with the highest SNR stellar spectrum) must be used for all the spectral cross-

correlations in the sequence, and these provide an arbitrary zero point reference for the 

variations.  A curve for each continuous set of FeAr shifts is made, and each of them is 

interpolated to the time of mid-exposure for each corresponding stellar spectrum.  These 

interpolated values are then subtracted from the stellar Doppler shifts in order to correct the 
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pseudo shifts of the spectrographic flexure.  An additional correction arises for long stellar 

exposures with FeAr lamps spaced widely apart, given that there may be a significant 

difference between the FeAr reference spectrum zero-point and its interpolated shift at mid-

exposure of the reference stellar spectrum.  There should be no correction between these 

two shifts, so the difference between the interpolated zero-point of the FeAr reference 

spectra and the zero-point stellar shift should be subtracted from the FeAr shift set as well, 

in order to force that difference to be zero.    

 Finally, the Doppler variations due to the radial velocity variations of the earth with 

respect to the direction in the sky of the target object must be corrected.  These variations 

arise from both the rotational and orbital velocities, so that when the object is on the 

meridian the rotational radial velocity is zero (and maximum at HA = ±6h), and so that when 

the object is in opposition to the sun the orbital radial velocity is zero (and maximum when 

in quadrature with the sun).  Standard algorithms53 can be used to determine the radial 

velocities along the line of sight to the object, and these in turn are subtracted from the 

Doppler shifts found above. 

 

 

 

 

                                                   

53 See Appendix A: Heliocentric Julian Day and Radial Velocity Corrections, for a Matlab script. 
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3.2.3  Fourier Representation for the Radial Velocity and Radial 

Displacement Curve & Comparison to Published Data 

 

 With the results from the section on photometry for the epoch and period of the 

stellar oscillation, the radial velocity variations were phased according to their heliocentric 

Julian date at mid-exposure.  A visual analysis was carried out in order to determine the 

correct order for the Fourier fit, using the lowest possible one so as not to inadvertently 

induce non-physical high frequency variations in the curve. 

 For the sparse number of spectra that were taken at the DAO a first order sinusoidal 

term plus an offset sufficiently modeled the data, as shown below in Figure 3-28.  

 

 
Figure 3-28:  Radial velocities from the DAO, Oct. 2003.  The data and their fit have been zeroed out to the 

mean and are oriented in the stellar inertial frame.  
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As these data alone are insufficient for the analysis in the Baade-Wesselink and 

Balona methods, published values were used.  The author would like to note that precise 

radial velocity data are extremely hard to come by, even for a bright Cepheid which one 

would expect to have been studied extensively in the past.  Most of the sources found 

(Barnes 1987; Bersier et al. 1994b; Gieren 1985; Haynes 1913; Kiss & Vinko 2000; Schmidt 

1974; Wilson et al. 1989) were of insufficient precision for current use.  It is difficult to 

obtain good spectra, more so when they must be properly calibrated with reference to 

standard stars54 and/or emission lamps for radial velocities.  It is additionally difficult to 

obtain good spectra with only one or two meter class telescopes (the type that are easy to 

receive observing time on), as the limiting magnitude for these are quite bright and 

integration times quite long.  Long integration times are inconsequential to the SN ratio of 

the data if the CCD chip is adequately cooled (with LN2 for example), however for short 

period stars one must avoid the spectral blurring intrinsic to observing a non-stationary 

spectrum over too large a fraction of the pulsational cycle.  For most longer-period Cepheids 

a typical 2-hour integration would amount to an inconsequential fraction of the period, but 

for SZ Tau such an integration would occupy approximately 0.5 km/s in intrinsic Doppler 

shift of the spectrum.  Additional blurring comes from the change in line-of-sight velocity 

towards the object due to the rotation of the Earth, which can also amount to approximately 

0.2 km/s if the integration was centered on the meridian and the object near the celestial 

equator.  These are all issues to consider when designing an observing plan. 

                                                   

54 Following the discussion in Chapter 3.2.2, it should be noted that if one is only using stellar reference spectra 
for the radial velocity calibrations, it is not possible to account or correct for the underlying spectrographic 
variations due to the different gravitational pointing geometries between the target and reference stars.  The use 
of standard stars is only sufficient only when it is known that the spectrographic variations are small enough to 
be ignored. 



102 

 

 

 

 The data of Bersier et al. (1994b) were the best available for SZ Tauri:  they have the 

largest number of data points spanning the pulsation cycle, and the lowest amount of scatter 

in the curve.  Their data were epoched and phased to those values listed in the paper, and 

the results are shown below in Figure 3-29.  Gieren (1985) also has reasonably precise data, 

and they agree perfectly with Bersier et al.‟s. There is also generally good agreement between 

the DAO data and that shown here, although the DAO data do have significantly larger 

scatter.  As is the common practice, the Bersier data were listed in the observational frame 

and so it was necessary to reframe them for use in the present analysis.  The author prefers 

to place the frame of the radial velocity variations in that of the observed star for general 

publication, because it is the absolute expansion and contraction of the star which concerns 

us most, not the motion of the star toward and away from us. 
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Figure 3-29:  Radial velocity data from Bersier et al., 1992. 

 

 A third order Fourier fit modeled the data well and takes the form below in equation 

(3.33); the coefficients follow in Table 3-8.  The angular frequency   is 2pi because the data 

have already been phased, and   is of course the phase. 
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    

 
 (3.33) 

 

Coefficient Value (km/s) 

a0 0 (0.6017) 

a1 8.473 

b1 4.274 

a2 1.396 

b2 -2.010 

a3 -0.4276 

b3 -0.4625 
Table 3-8:  Coefficients for the 3rd Order Fourier Radial Velocity Fit 

 

 Note the entry for the coefficient „a0‟ in the above table:  When a Fourier fit is 

performed on any set of data, the first term in the fit is simply the data‟s mean value.  This 

value can be due to any sort of bias offset, but in the case of fully calibrated stellar radial 

velocity measurements, it is the systemic line-of-sight radial velocity of the star.  So the 

bracketed value for “a0” is thus from the fit of the data.  However, in the mean inertial frame 

of the star there must be no net radial velocity residual, so that over a pulsational cycle the 

star returns to its previous radius and there is no overall increase or decrease in the star‟s 

mean volume55.  Therefore, when integrating the radial velocity curve such as to obtain the 

corresponding radial displacement, the value for “a0” must be set to zero.  Also, integrating 

for the stellar radial displacement is the reason why the radial velocity data must be framed 

in that of the star, and not in that of the observer.   

                                                   

55 On time scales very much smaller than those of stellar evolution. 
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 Bersier, et al. (1994b) state that the CORAVEL radial velocity data require a zero 

point correction: 

 0.4 /absolute CORAVELRV RV km s , (3.34) 

so that the systemic mean radial velocity of SZ Tau is 

 0.6017 0.4 1.017 /RV km s     . (3.35) 

Here we used the value of “a0” in regards to our frame of reference, and so took its positive 

value from that of Table 3-8. 

 Although the Bersier data originate from a different epoch, it is not expected that 

gross variations in the shape of the radial velocity curve have occurred between the date of 

their observation and that of the MLO photometry.  While minor variations in the period 

have been reported56 for SZ Tauri, the sinusoidal nature and amplitude (Platais & 

Mandushev 1993) of its phased light curves have remained constant.  It ought to follow that 

the radial velocity curve has remained constant in phase as well.  Certainly the best 

circumstance would be having simultaneously observed photometric and spectroscopic data.  

Not having contemporaneous radial velocity data is likely the principal source of error in the 

work presented here, although that is impossible to quantify. 

 The stellar-frame Fourier fit of equation (3.33) and Table 3-8 can easily be integrated 

for the determination of the stellar radial displacement, and this is shown below in Figure 

3-30.  If the integration is performed numerically, it is necessary to subtract the mean value 

from the result so that the displacement correctly brackets zero.  The equation can obviously 

be integrated analytically and in this case the curve will correctly bracket zero displacement.  

                                                   

56 However, these are somewhat dubious given the author‟s evaluation in Chapter 1.2. 
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It is important to have the displacement curve correctly zeroed as this corresponds to the 

mean radius of the star, which we aim to determine.  Note as a simple general observation 

that the star‟s outward expansion is less than that of its inward contraction, and hence 

spends more time larger than its mean radius than it does smaller.  With the radius 

determined in Chapter 4, the radial variation amounts to approximately two percent of the 

mean stellar radius. 

 

 
Figure 3-30:  Integrated radial velocity curve.  The displacement curve has been zeroed to its mean and the 

projection factor has been applied. 

 

 A projection correction must be applied to the integrated velocity curve in order to 

obtain a more physically accurate model of the stellar displacement.  In most cases the radial 

velocity data ultimately come from some form of spectral line positioning technique.  
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However, spectral lines are stellar-disk integrated phenomena, and so the observed radial 

velocity is the sum of all vector components: those pointing directly toward the observer at 

the centre of the disk, components pointing at right angles to the observer at the edge of the 

stellar disk, and all components in between.  In the first-order approximation, the projection 

factor is the disk-integrated product of projection annuli weighted with model limb 

darkening intensity values.  For this work, we used the relation from Gieren et al. (1989) 

 1.39 0.03logp P   (3.36) 

where „p ‟ is the projection factor and „P ‟ is the period (in days) of the Cepheid in question.  

For SZ Tau‟s period of P = 3.1488 days, the projection is factor is p = 1.375.   

Sabbey et al. (1995) explore the behaviour of the shape of spectral lines over the 

pulsation cycle.  They report the need for a phase-dependent p-factor due to line symmetry 

variations changing systematically between the expansion and contraction phases, ultimately 

due to changes in the atmospheric depth of the line formation over the cycle.  Gray (2007) 

used spectral-line modeling to fit observed spectra in a successful attempt to determine 

directly the radial velocity variations of the surface of a star, instead of converting from an 

observed radial velocity to a pulsational one through the p-factor.  His method can easily be 

turned around such as to directly calibrate the p-factor as a function of phase and period, 

although he did not have a statistical sample with which to do so – the work was more of a 

proof of concept based on a small sample of representative Cepheids. 

Figure 3-31 below shows the relevant observational data curves required for the 

Baade-Wesselink and Balona analyses.  If we recall equation (2.8) 

0( ) ( ) 5log( ( ))m A CI B R R        , 
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we see that if a star did not vary in radius the logarithm term could be absorbed into the 

constant, and the magnitude would then scale directly with the colour index.  But because 

the colour index is representative of the stellar effective temperature, one would not expect 

colour index variations without changes in radius due to simple thermodynamics.  If the 

radial displacement ( )R   is non-zero and not in phase with the temperature variation, the 

magnitude and colour curves will no longer directly scale to each other.  The radial 

displacement term will then act as a perturbing or correcting effect, the degree of which 

depends on R0, which then combines with the colour curve to produce the light curve.  This 

can be seen directly in the figure below.  Note that the displacement curve lags the light 

curve by about 0.34 phase, while the colour index lags it by about -0.04 phase. 

 

 
Figure 3-31:  Displacement, Differential V, and Mean Colour Index curves. 
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Chapter 4:  Results 

 

4.1  Baade-Wesselink Analysis 

 

The basic methodology of the Baade-Wesselink method was introduced and discussed 

in Chapter 2.1; here it is applied to the data of SZ Tau discussed in the previous sections.   

A graphical user interface (GUI) software program, called BaadeWesselink.m, was 

written in MATLAB to facilitate the analysis.  A screenshot is presented below in Figure 4-1. 

 

 
Figure 4-1:  Screenshot of Matlab GUI BaadeWesselink.m.   
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 Upon entering the program the GUI prompts the user to open the relevant files for 

the analysis.  Following the derivation of the method in Chapter 2.1, the required input data 

are the differential magnitude curve, the radial displacement curve, and the colour index 

curve.  The colour index curve used in the analysis is the one from Figure 3-12, i.e. the mean 

colour index of the 4 adjacent-filter combinations of the five UBVRI passbands.  Because 

only the phases of equal colour index are needed in the solution, the colour index curve does 

not need to be fully standardized.  Using the mean colour index curve allows for unique 

solutions to the radius in each of the five passbands, which will be the averages of the results 

if each colour index and passband combination were used individually (as is commonly 

done; for example see Milone, et al. (1999)). 

 After loading the files, one is prompted to select the region of the colour index curve 

to be used for determining the points of equal value on the alternate branch of the curve.  

This can be selected manually or default to the range 0.1   to 0.4   as shown in Figure 

4-1.  It is best to use the steepest part of the index curve for these points as their phases are 

necessarily more well defined there, due to the slope of the curve being highest in that 

region.  It is also necessary that the selected points be not too near each other on either side 

of the curve, because the difference in magnitude at phase points close together necessarily 

goes to zero and results in an indeterminate solution.  This is a problem the Balona solution 

avoids, as we will see in the next section.  An arbitrary number of forty points is evenly 

spaced throughout the range, and each is used in the subsequent solution.  Because the 

number of points which is used in the solution is arbitrary, it is possible only to determine a 

mean radius from the set of solutions, and no realistic estimate can be made of the error on 

the mean because this arbitrarily scales to zero as the number of points increases to infinity.  
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At each solution however, it is possible to calculate an individual error through standard 

differential techniques, such as those described in Melissinos (1966).   

 The final task is to select the search region on the alternate side of the colour index 

curve for the determination of the forty corresponding phases of equal colour index.  The 

user graphically identifies the region of the curve in which to find values of equal colour 

index, so in the case above selecting from 0.5   to 0.95   would be appropriate.  

Because the colour index curve is usually a noninvertible function, such as a truncated 

Fourier series, it is necessary to iterate within the region 0.5 0.95   to find the 

corresponding colour value and its phase within some specified tolerance.  Typically a 

tolerance of 610 phase  (or 610 0.27secxP  ) was used, which is much smaller than the 

associated photometric errors translated into the time coordinate via the slope of the index 

curve.  For example, the slope on the left branch used for the initial point selection is 

roughly  

 
0.4 0.25

0.375 /
0.45 0.05

mags phase





. 

The average error of the mean colour index curve from Figure 3-12 is 0.006 mags.  The 

average error translated from the photometry into the time dimension is then 
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This is much greater than the tolerance value, and almost 2% of the phase57.  This simple 

analysis also shows that the solution of the Baade-Wesselink method breaks down for point 

pairs near the minima and maxima, where the slope of the index curve nears zero. 

 For each of the forty points on the ascending-branch in Figure 4-1, the alternate 

region is searched for an equal value to within the specified phase tolerance.  The algorithm 

begins by calculating the value of the index curve at the midpoint phase of the search range.  

If the calculated value is greater than the comparison value, the phase point steps ahead by 

half of the search range.  This time the calculated value will be too low, so the step is divided 

by 2 and the phase point moves back by thence a quarter of the search range.  If the new 

calculated value is once again too high, the step is halved another time and the phase point 

jumps forward by an eighth of the search range.  This process is repeated until the step size 

becomes less than the tolerance value, when the corresponding phase of equal colour index 

is recorded, and the Baade-Wesselink solution is calculated.  The iteration then exits and is 

repeated for the remaining points from the left side of the index curve.  Figure 4-2 below 

shows the result, continuing from Figure 4-1. 

 

                                                   

57 Two percent of the phase is a non-trivial translation of the error, and 0.006mags in photometric colour index 
dispersion is reasonable for ground based work. 
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Figure 4-2:  BaadeWesselink.m after the sequence of iterations. 

 

 The top plot on the right hand side of Figure 4-2 shows the step size reached at the 

last iteration and these are all, of course, less than plus or minus the tolerance value.  The 

middle-plot on the left in the above figure shows that at phases of equal colour index, the 

magnitudes are not the same and differ by the amount shown in the 2nd plot in the right 

hand column.  This is due to the radius of the star not being the same at these phases, 

differing by the amount shown in the 3rd plot on the right column.  Recalling the Baade-

Wesselink solution 
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1( )R   and 2( )R   are the radial displacements at the respective phases of equal colour 

index (3rd plot, right column), and MI2,1 is the difference in magnitude (labeled „Radius Index‟ 
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in the figure) of the light curve between the phases φ2 and φ1.  The distribution of solutions 

for R0 (in solar radii) at each of the forty phase pairs of equal color index is shown in the 

bottom plot of the right hand column.  The results for the five UBVRI passbands are shown 

in the next figure. 

 

 
Figure 4-3:  The distribution of Baade-Wesselink solutions for the UBVRI passbands. 

 

It is immediately apparent that the Baade-Wesselink solution can produce a very 

wide range of solutions for the mean radius, depending on which phases are used.  Other 

authors have utilized large numbers of combinations of indices with passbands such as to 

dampen the statistical errors for a better estimate on the passband-averaged mean solution 
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(as done for example in Milone, et al. (1999)).  Nevertheless, it is discomforting to see such a 

large variation in the solution for the radius - one would expect to see a flatter distribution of 

solutions with phase.  Certainly, narrowing the phase range for the solutions will hide the 

large range of variations in the solutions.  The reassuring observation is that all passbands 

follow the same general trend, and this may indicate that the problem is systemic to the data.  

A problem previously mentioned in this work is that the radial velocity data used were 

archival.  However, redeterminations of Gieren‟s 1985 and Bersier et al.‟s 1994 data using 

epochs from photometric data close in time to their observations, and using the average 

period from Table 1-2, show no changes in shape or in phase.  The effect of a mismatch in 

phasing between the light and RV curves, which would be the most obvious (and simple) 

problem, has nevertheless been investigated.  The radial velocity data were shifted in phase 

by plus and minus 0.1phase, and the resultant distributions of solutions were compared to the 

solutions with no change in the phasing.  The results for the V passband are shown below in 

Figure 4-4. 
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Figure 4-4:  Radius solutions and RV curve phase shifts. 

 

A rough linear fit to the mean of the three solution curves indicates sensitivity, valid 

only around the range of RV phase shifts 0.1 0.1    , of 2 solar radii per percent of 

phase mismatch between the radial velocity and photometric curves.  Sensitivity such as this 

is expected, and indicates the significance of the limiting 2% error in phase-point selection 

accuracy of the colour index data discussed earlier, implying a fundamental accuracy limit of 

4 solar radii in any single solution.  Of course, the added uncertainty in the radial velocity 

and single-passband data only serve to push the accuracy to lower (i.e., higher solar radii) 

limits than this.   

Ultimately, it is apparent that small phase mismatches between the photometric and 

radial velocity data only raise or lower the mean value of the solution, while the general 

shape of the solution distribution remains relatively constant and scales roughly linearly with 
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the phase mismatch.  In other words, the distribution of solutions was not flattened out and 

the worrisome large range of solutions was not corrected through this level of adjustment of 

the phase matching between the two types of data.  Curiously, a phase shift in the RV data 

of -0.7 phase (or +0.3 phase) did produce a relatively flat solution distribution of approximately 

half the value, but there is clearly no way to justify such a shift given that the phases of the 

radial velocity data re-determined by the author were found to agree effectively exactly with 

what had been originally published. 

Phase mismatches between the passband and colour index curves might possibly be 

a problem, although these are formed from the same data and so the sign of the phase 

discrepancy would be ambiguous.  Also, this again would only raise or lower the mean value 

of the solution and would simply have a different level of sensitivity than that above for the 

RV curve phase shifts.  In the discussion of the Balona method ahead, we will see why this is 

and why it can be expected to be so.  Shifting the phase of the mean colour index curve by 

±0.01 phase indicated a sensitivity of 16 solar radii per percent of phase mismatch between 

the colour index and light curves.  This indicates how tremendously important it is to 

properly separate the surface flux contribution from the luminosity curve of a Cepheid. 

It must be concluded that in order to change the shape of the solution distribution we 

must have a change in the pulsational shape, and not (just) the phase match, of one or 

several of the three input data curves (these being the radial velocity, passband, and colour 

index).  The radial velocity curve may be the most suspect, given the comparison of the 

author‟s DAO data to that of Bersier, et al. (1994b) shown in Figure 4-5 below.  However, 

the DAO data are too sparse to make any definitive statements.  On the other hand, the 

differential UBVRI passband data presented in this work match extremely well with other 
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published data (as in Figure 3-13 on pg. 70), and the colour index curves are formed out of 

the passband data, and the mean colour index used in this analysis also matches quite well 

with other published data (as in Figure 3-15).  In exploring the solution distributions using 

the four colour index curves individually, the shape of the solution distributions follow that 

of using the mean index curve only, and indeed for an individual passband the mean of the 

four unique colour index curve solutions is the same as that of using the mean index curve in 

the solution for that passband alone.  Using non-adjacent passbands for individual colour 

index curves (for example, B-I) does not change the general shape of the solution 

distribution either.  So at this point we have relative confidence in the colour index curves 

and their mean.  The mean Baade-Wesselink radius in each of the UBVRI passbands and the 

passband-averaged result are tabulated below in Table 4-1, and plotted in Figure 4-6. 
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Figure 4-5:  DAO and Bersier et al. radial velocity curves.  

 

Filter Radius (RSun) Stdv58 (RSun) 

U 40.7 13.2 

B 35.4 10.8 

V 36.4 10.8 

R 38.3 11.1 

I 38.9 12.0 

Mean 37.9 ± 2.1 - 

Table 4-1:  Baade-Wesselink Radii 

 

                                                   

58 As mentioned in the text, the Baade-Wesselink method does not allow for meaningful error estimates in each 
of the passbands.  However, one can still meaningfully take the standard deviation of the passband means as 
the error on the passband-averaged mean. 
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Figure 4-6:  Baade-Wesselink radii.  The trend of radius with passband correlates almost perfectly with the 

epoch lag distribution from Chapter 3.1.2.   
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4.2  Balona Analysis 

 

Recall equation (2.8) from the introductory discussion of the Balona method in  

Chapter 2.2: 

 0( ) ( ) 5log( ( ))m A CI B R R        . (4.2) 

Here, m(φ) is the light curve in one of the UBVRI passbands, CI(φ) is the mean colour index 

and δR(φ) is the radial displacement.  The parameters A and B are simple linear scaling 

factors, while R0 is the mean radius of the solution - the parameter we are most interested in.  

The equation can be solved for the parameters numerically through nonlinear least squares 

data fitting with the Matlab function “fminunc”, which determines the unconstrained59 

parameters of a given functional resulting in a least-squares minimum of the input data about 

the fitting curve.  In practice we have a truncated Fourier series for each of the three input 

data curves as functions of phase, so for the input data required in fminunc we simply 

compute the Fourier curves at one thousand evenly distributed points between zero and one 

phase, and fminunc then reduces the deviance of these points from each other through 

manipulation of the relevant parameters within the given functional topography of equation 

(4.2). 

 It is quite informative to consider the particular role each term and each parameter in 

equation (4.2) fulfills.  The term m(φ) appears by itself and its role is obvious, although we 

                                                   

59 There is another function for constrained parameter fitting as well, but there is no need to constrain the 
parameters to any range in this case, as the solution converges quickly.  The algorithm uses a “quasi-Newton” 
iteration method as discussed in the Matlab help pages. 
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see on the right hand side that it arises out of the product between temperature (or surface 

brightness as represented by the colour index, i.e. A*CI(φ)+B) and surface area (i.e. 

5log(R0+δR(φ))).  If the star did not vary in radius (i.e., δR(φ) = 0) we would have that the 

magnitude scaled linearly with temperature, the surface area term being absorbed into the 

constant B in order to simply shift the colour curve up or down to match the ordinate of 

m(φ).  Of course in practice such a situation would never exist60, but imagining this aids the 

interpretation.  In Figure 4-7 it can be seen that the colour index and light curves do nearly 

scale linearly with one another, but it is obvious that a horizontal shifting in phase is needed 

in order to bring the curves into line with one another. 

                                                   

60 Because we are speaking of curves, this would imply a variation in temperature.  A variation in temperature 
would be associated with a variation in radius due to simple thermodynamics. 
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Figure 4-7:  A linear fit of the colour index curve to the light curve. 

 

Now with the surface area term a function of phase it no longer solely has an effect 

in simply shifting the right side of the equation vertically up or down.  Essentially, one could 

think of 5log(R0+δR(φ)) as being a series of constants which depend on phase and which 

have a non-linear effect on the right side of equation (4.2).  It is a subtle point to consider 

that this no longer has a role in uniform vertical shifting of the right side of the equation, but 

rather skews the linear colour index fit to ultimately produce a shift of the linear fit in the 

horizontal coordinate.  If one recalls Figure 3-31 it is easy to visualize the interaction of the 

three input curves with one another; the plot is reproduced here. 
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Figure 4-8:  The light curve is clearly most dependent upon the colour index, with the radial displacement 

having a lower order perturbing effect. 

 

  The important insight is that it is the value of R0 in the surface area term which 

determines the amount of horizontal skew afforded by it.  For large R0 the entire term will 

more closely mimic that of a simple constant, because the variation of δR(φ) superimposed 

onto R0 will be only a small percentage (especially after the logarithm is taken of it).  For 

smaller R0 the variation of δR(φ) will have a greater skewing effect.  In this way one can 

understand how the colour index and radial terms are linearly independent of one another, 

and also how exactly the radial term affects the solution such as to allow an estimate to be 

made of it in the fitting process.  Essentially, the colour index must lead the light curve 

because the radial displacement lags it - they combine to produce the light curve with a 

maximum in between. 
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Note that the lag of the displacement curve is significantly more, and of the opposite 

sign, than the lag of the colour index curve relative to the light curve.  This can be expected 

on two respective counts.  First, the luminosity of a star is generally dependant on 

temperature to the fourth power, while on radius to only the second.  So for changes in each 

of the dependencies of relatively similar percentages, it is the change in temperature which 

will have the dominant effect, and this is why the colour index and light curves so closely 

mimic each other as seen in Figure 4-7.  The radial displacement has a lower order effect, 

and this is why it lags the light curve much more significantly than the colour index.  

Secondly, borrowing from the “squeeze theorem” of differential calculus, a curve which is 

itself the product of two curves will have its maximum at a point somewhere in between the 

maximum of its constituent curves, and so we necessarily have that the time of maximum 

brightness occurs between the times of maximum temperature and maximum radius.  In 

general it occurs closer to the time of maximum temperature because that is the dominant 

factor.  These simple facts impose the need for passband epoch lagging if indeed a colour 

index is representative of effective temperature and surface brightness, because it is the lag 

between passband curves which give rise to an index curve the maximum of which occurs at 

a time before either of the passbands.  For stellar pulsation, with the added effect of a radial 

displacement curve and accounting for the squeeze theorem, this maximum must always 

occur before any of the passbands reach their maxima.  And if each passband has its own 

time of maximum brightness, then following the discussion regarding Figure 4-7, we must 

unavoidably conclude that each passband will result in a different radius in the solution.  At 

each passband, different amounts of skew will be needed from the radius term in order to 

converge the fitting routine, and these will manifest as different values of R0.  There is no 
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reason to assume that these are not the physically real geometric properties of the star.  

Indeed, the Baade-Wesselink analysis in the previous section did show a correspondence 

between passband and radius, and presently we will see the same for the Balona analysis. 

A representative Balona fit is shown in the next figure.  The input data were the 

same as in Figure 4-8.  A Matlab program called “Balona.m” was written to perform the fit 

automatically, with the user supplying the relevant data in the input arguments of the 

program.  The program also displays a live video of the fitting process as the Matlab 

subroutine (i.e. “fminunc”) explores the parameter space of the fitting equation - it rather 

looks like a couple of tangled up worms wriggling their way around until they find a 

comfortable resting position as near to each other as possible. 

 

 
Figure 4-9:  Balona fit of the mean colour index and radial displacement curves to the light curve. 
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 In the above figure we see an increased deviation of the fit after about 0.5 phase.  

This is likely due to that region suffering from phase gaps in the photometric data, leading to 

a poor constraint and estimate for the colour index and passband curves in that area.  The 

standard deviation of the residuals in the figure is typical of those for the other passbands, 

the mean deviation falling to within the fit tolerance (10-10 arbitrarily) specified when calling 

fminunc.   

 The Balona method uses the entire data set, unlike the Baade-Wesselink method 

where the solution points are restricted to an arbitrary number within a “safe” range of the 

possible solution space.  Similarly however, although it is possible to calculate analytically the 

statistical errors on the fit parameters for each solution, because we are fitting Fourier curves 

of 1000 points the calculated errors still qualify as being arbitrary.  Using 100 or 10,000 

points give more and less error respectively, as any random statistical error always scales 

inversely with the square root of the number of data points; therefore, these errors are 

internal to the solution only.  The Balona radius in each of the UBVRI passbands and the 

passband-averaged result are tabulated below in Table 4-2, and plotted in Figure 4-10.  There 

is an obvious correlation between the Baade-Wesselink passband solutions (Figure 4-6) and 

the Balona solutions below, and this is discussed in the following section. 
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Filter Radius (RSun) Stdv61 (RSun) 

U 45.6 0.001 

B 39.9 0.002 

V 40.8 0.003 

R 42.6 0.001 

I 43.5 0.002 

Mean 42.5 ± 2.3 - 

Table 4-2:  Balona Radii 

 

 
Figure 4-10:  Balona radii. 

                                                   

61 The errors on the 5 passband radius parameters are internal to the solution only. 
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4.3  Discussion of Results 

 

The correlation between the two methods of solution is shown in the next figure.  

The Balona solutions are approximately seven percent larger than the Baade-Wesselink ones 

and have an offset of 1.4 solar radii, so that at 42.5 RSun the difference between the mean of 

the two solutions is 4.6 RSun, or close to ten percent. 

 

 
Figure 4-11:  Baade-Wesselink vs. Balona radii.   
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same starting point (equation (2.2)), and indeed one can easily derive the Baade-Wesselink 

solution from the equation for the Balona method as a special case62.  Recalling the Balona 

equation (4.2) (and (2.8)), 

0( ) ( ) 5log( ( ))m A CI B R R        ,                                 (4.3) 

one simply needs to subtract this equation from itself at phases φ1 and φ2 where the 

respective colour indexes are equal, leaving only a difference in magnitude on the left and a 

logarithmic difference in radius on the right, all other terms cancelling.  It is then quite a 

simple matter to solve for R0, and this results in the Baade-Wesselink solution of equation 

(2.6).  The two solutions are fundamentally identical – they are simply different treatments of 

the application of the method.  The systematic difference that does exist between the two 

solutions can easily be attributed to the clear systematic difference between either‟s practical 

calculation; as we have seen, the Baade-Wesselink method requires the neglect of certain 

ranges of legitimate data, where equal colour indexes occur at too near of phase and at 

phases too near zero slope in the colour index, while the Balona method has no such 

restriction. 

In any case, the Baade-Wesselink and Balona methods agree in their passband 

averaged mean radius to essentially the one sigma level, the upper one sigma limit of the BW 

solution being 40 RSun while the lower limit of the Balona solution is 40.2 RSun.  In making 

this comparison, however, we realize that the Baade-Wesselink method is simply an 

alternative approximation to the more comprehensive Balona solution, and that 

fundamentally we are not extracting or comparing any unique information between the two 

                                                   

62 Historically the Baade-Wesselink method was developed first. 
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solutions.  Nevertheless, the mean and first moment of the Baade-Wesselink and Balona 

solutions is    R = 40.2 ± 3.3 RSun , but we will use the Balona results for the radius found in 

this work, i.e., from Table 4-2:  

  42.5 2.3 SZ Tau SunR R    . (4.4) 

Eleven previous solutions for the radius are listed below in Table 4-3.  The Balona 

solutions generally report larger radii than the others, however there is quite good agreement 

between solutions in most cases. 
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Reference Radius (RSun) Method 

Burki (1985) 36 Wesselink63 

Gieren (1985) 34.2 ± 3 Barnes-Evans64 

Sanewal  & Rautela (1989) 37.8 ± 1.2 Baade-Wesselink65 

Laney & Stobie (1995) 38.6 ± 1.2 Balona65 

Gieren, et al. (1997) 
V & V-R: 35.9 ± 2.8 
K & K-J: 45.6 ± 4.0 
V & V-K: 27.7 ± 0.5 

Barnes-Evans64 

Krockenberger et al. (1997) 
8.3

5.836.3   Baade-Wesselink65 

Ripepi et al. (1997) 44.8 CORS/Barnes-Evans66 

Sachkov (1997) 43 ± 6 Balona65 

Turner & Burke (2002) 34.8 ± 1.4 Baade-Wesselink65 

Barnes, et al. (2003) 39.6 ± 6 Bayesian Barnes-Evans66 

Postma (this work) 42.5 ± 2.3 Balona65 

Average 38.2 ± 4.9 - 

Table 4-3:  Radius determinations for SZ Tau. 

 

 The radius determined in this work matches within experimental error the average of 

the other 11 values, and helps confirms the findings by Sachkov (1997) that the radius of a 

(low-amplitude) Cepheid can be used to determine its pulsation mode.  Sachkov (ibid.) 

established two relations for the period-radius relationship, based on the segregation found 

                                                   

63 As described in Burki & Benz Burki, G., & Benz, W. 1982, Astronomy and Astrophysics, 115, 30. 
64 Also known as the Surface Brightness Method. 
65 As described in this work. 
66 As described in referenced publication. 
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in his study of radius vs. period for 13 DCEPS Cepheids; the segregation could be explained 

if stars of the two groups pulsated in either the fundamental or the first-overtone mode, 

given that overtone pulsators will have a swollen radius for a given period.  This study would 

then imply that not all DCEPS are overtone pulsators. 

 Using the mean temperature determined in Chapter 3.1.3, which was found to match 

well with that determined by Sanewal & Rautela (1989), and the radius from equation (4.4), 

the average luminosity of SZ Tau was computed to be 

 

2138  235 

log 3.33  0.05

SZ Tau Sun

SZ Tau

Sun

L L

or

L

L

 

 

 (4.5) 

SZ Tau is, expectedly, a class Ib supergiant with a mean spectral type of F7.5. 
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Chapter 5:  Final Comments and Future Work 

 

The passband epoch lagging phenomenon discovered in the data of this work was an 

unexpected result.  Phase-lags of temperature to light, radius to light, and temperature to 

radius have been noted by various authors (Baker & Kippenhahn 1962; Berdnikov & 

Pastukhova 1995; Fernie & Hube 1967; Gieren 1982, 1985; Kukarkin 1975; Madore & 

Fernie 1980; Merengo, Karovska, & Sasselov 2004; Moffett 1989; Rosseland 1949; Ruoppo 

et al. 2004; Scarfe 1976; Simon 1984; Szabo, Buchler, & Bartee 2007).  However, passband 

epoch lagging appears to have been largely over-looked, even over the century or so of 

filtered-light curve observation of Cepheid variables.  Very high quality photometry and 

advanced reduction methods are required in order to see the phenomenon at all, and not a 

large percentage of published data may have been sufficiently precise. 

Conceptual reasoning and explanations for epoch lagging have been discussed in 

previous Chapters, and now modeling the light and radius curve variations using simple co-

sinusoidal oscillations lends confirmatory rationale.  Let the effective temperature of a 

Cepheid, with the maximum of the temperature curve defining zero phase, be 

 0( ) ( )T T T     (5.1) 

and let the radius be 

 0( ) ( )R R R       (5.2) 

where φ is the phase (ranging between 0 and 1)  and η is the lag of the radial maximum to 

that of the temperature (about 0.37 phase for SZ Tau).  For each of the 
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  ;  ;  ;  ;  iJ U B V R I  Johnson passbands, we can approximate the stellar luminosity Li(φ) 

with Planck‟s black-body law such that 

 
2

2

5

0 ( )

2 1
( ) 4 ( ) ( )

e 1

i ihc

kT

hc
L R J d

 
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







   (5.3) 

where Ji(λ) is the transmission profile of the i‟th passband (Moro & Munari 2000).  On the 

magnitude scale we have 

 10( ) 2.5log ( ( ))i i im L c     (5.4) 

where ci is a zero-point constant, which for the purposes here can be assumed equal to zero.   

Using sample physical values of SZ Tau for equations (5.1) and (5.2), we can approximate a 

general pulsation as 

 
537

( ) 6015 *cos(2 )
2

T      (5.5) 

and 

 
1.8

( ) (42.5 cos(2 ( 0.37)))
2

SunR R     . (5.6) 

First, it should be obvious that a constant surface area, thermally-varying object will 

produce light curves which are in complete phase with one another.  This will likewise occur 

when a radial variation is added which is in phase with the temperature variation, i.e. when η 

is equal to zero.  Colour index curves formed from these curves will also be in the same 

phase and will maximize at the same time as the light curves.  However, if a radial variation 

is introduced which is not in phase with the temperature variation (as in equation (5.6), i.e. η 

≠ 0), the resulting light curves will show an epoch lag for the simple fact that the passband 

flux curves have unique amplitudes, and these combine uniquely with the radial variation to 



136 

 

 

 

produce luminosity curves each with (sequentially) unique times of maximum, as can be seen 

in Figure 5-1 below. 

 

 
Figure 5-1:  Johnson UBVRI light curve and colour-colour plot. 

 

Not all the known properties of a Cepheid light curve are reproduced with this 

preliminary model, however.  First, all the colour indices formed from this model maximize 

at the exact same time, i.e., at phase zero.  Though the various colour indices from Chapter 3 

were found to have different times of maximum, this may not be argued as a general 

property of Cepheids because it hasn‟t really been studied before.  But second, and this is 

related to the first point, there is no colour-colour looping in the colour-colour plot of 

Figure 5-1.  All this is simply because the radial term of equation (5.3), when inserted into 
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equation (5.4), gets subtracted out when forming the colour index because it has no 

passband dependence.  However, colour-colour looping is a general property of Cepheid 

light curves (Diethelm 1983; Gieren 1982; Onnembo et al. 1985).    So equation (5.6) can 

then be modified so that 

 
1.8

( ) ( cos(2 ( 0.37)))
2

i i SunR R R        (5.7) 

where <Ri> is the mean radius of the i‟th passband.  Computing new model light curves 

with passband-radius values taken from Table 4-2 results in Figure 5-2 below.  In addition to 

each passband maximizing at a (sequentially) unique time the colour-colour plot now shows 

an open loop, indicating that the colour indices are no longer maximizing at the same time 

and so are no longer in phase with each-other.  This highlights a potentially severe problem 

because proper separation of the temperature contribution from the light curve is so 

important when computing radii with either the Baade-Wesselink or Balona methods, and so 

puts into question which colour index is the appropriate one to use.  This is ultimately why 

this author used the mean colour index curve in his solutions for the radii.  In Gray (1994), 

Gray & Brown (2001), and Gray & Johanson (1991), it is shown that line-depth ratios of 

temperature-sensitive to temperature-insensitive lines can provide a precise index (order 

~1K) on stellar effective-temperature variations.  For a given star, line-depth ratio variations  

are completely independent of metallicity changes (because there are none), surface gravity 

variations (because line-broadening effects are divided out in the ratio), and most 

importantly the surface area, which does change and which as we have just seen does affect the 

standard colour indices.  In addition to Gray (2007), where high-resolution spectroscopy was 

used to directly compute the radial velocity variations without the need of the „p‟-factor, one 
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may produce an original observational methodology for separating the temperature and 

radial effects from the light curve, and ultimately for determining the radius using either the 

Baade-Wesselink or Balona approach. 

 

 
Figure 5-2:  The colour-colour plot now shows an open loop, which is a general feature of Cepheid pulsation. 

 

 To completely reproduce all the qualitative properties of SZ Tau‟s variation, we must 

consider that the U passband shows a larger radius than any of the others, not quite fitting 

into the general sequential trend.  In Table 3-5 we also saw that the U passband epoch 

occurred slightly later than the B passband, again not fitting the general sequential trend.  

The physical explanation for this may come from the Balmer discontinuity pushing the 

formation of the continuum around 3650 Å (the center of the Johnson U passband) to much 
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higher levels in the photosphere because of the very strong absorption on the short-

wavelength side of that filter (Gray 1992, pp 160-163).  We may thus consider that different 

passbands, being formed at distinct layers within the photosphere, may also have unique 

amplitudes of variation so that 

 ( ) ( cos(2 ( 0.37)))
2

i
i i Sun

R
R R R


        (5.8). 

If we make the supposition that higher passband radii undergo larger amplitudes of 

variation, so that {2.2;  1.4;  1.6;  1.8;  2.0}iR  , we qualitatively reproduce the observed 

properties of SZ Tau‟s oscillation: the colour-colour loop opens up significantly more, the 

passbands and colour indices have unique times of maximum, and the U passband 

maximizes after the B passband.  This is shown in Figure 5-3 below – the phase-times of 

maximum for the UBVRI passbands are 0.023, 0.02, 0.029, 0.04. and 0.56, respectively. 
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Figure 5-3:  If each passband-layer of the photosphere has a unique amplitude of radial excursion, all known 

properties of SZ Tau‟s pulsation can be reproduced. 

 

 If we let the blackbody surface flux contribution of equation (5.3) be generally 

( , ( ))f T  , we can write  

 
0

( ( )) ( , ( )) ( )i iF T f T J d    


    (5.9). 

This more general form would allow spectral-type phase-interpolated Kurucz (1979) stellar 

model atmospheres to be used for the surface flux contribution, and would more properly 

simulate the behaviour of the various stellar absorption feature variations as the Cepheid 

moves through spectral-types in the course of its pulsation.  We can then model a light curve 

generally as 
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        
 (5.10) 

once again letting the phase of maximum surface flux define the epoch, for simplicity.  

Because the driving force of the pulsation comes from a layer far below the photosphere, the 

pulsation will sequentially pass through each passband-layer as it propagates to the stellar 

surface, and so the phase-lag of radius to temperature should be passband dependent as well, 

i.e., η = ηi.  Note that equation (5.9) (i.e., the first term in equation 5.10), as essentially a 

function of spectral type, is the linear colour index approximation of the Balona solution, i.e.  

 10 02.5log ( ( ( )))iF T T A CI B      (5.11). 

One may additionally consider that ( , ( ))f T   will be dependent on the depth of 

formation as well, so that the spectral flux distribution in each passband is 

( , ( ), ( ))i if T R   .  In the most general terms, the time of maximum light for each passband 

can be determined by 
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   

 
 (5.12) 

where vi(φ-ηi) is the radial velocity curve specific to each passband.  Equation (5.12) can be 

solved numerically, and the passband dependencies of the various parameters are indicative 

of non-commensurate times of maxima for each passband-layer of the photosphere. 

Epoch lagging gives the astronomer a method with which to peer into the third 

dimension of the stellar photosphere and provides for a more complete understanding of the 

structure of supergiant atmospheres.  It also highlights several limiting factors in the current 
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methodology of determining Cepheid radii and ultimately the precision in the period-

luminosity relationship.  Separation of the surface flux contribution from the light curves 

directly, and significantly, affects the solution for the radius in the Baade-Wesselink and 

Balona methods.  This has been under-appreciated to the point that some authors have 

mistakenly recommended that infra-red passbands should be used for the colour-index, 

reasoning those passbands are more sensitive to radial variations as opposed to temperature 

ones.  Though this may be true, it convolutes the fundamental desire to use colour indices to 

represent the surface flux contribution and its variations.  The best colour index to form 

would be one in which one passband is highly sensitive to temperature, with the other one 

being much less so; for example, U-I.  But even if a truly accurate surface flux index can be 

formed when subtracting two passbands, one still has the result that each passband will 

show a different radius because each passband has a unique phase lag to that of the 

temperature, ultimately because each passband originates at a unique depth in the stellar 

photosphere.  In this work, we have seen a variation of roughly 5 solar radii in the solutions 

between the U and I passbands, an “error” of roughly 10%.  Whether or not this is 

physically accurate may be questioned, but ignoring passband epoch lagging does nothing to 

improve the current limit of ±10% in the period-luminosity relationship.  Because there has 

been no standardization within astronomy of which passbands and which colour indices are 

to be used when solving for the radius, one can easily conjecture that the current limit in 

precision is at least partially due to the epoch lagging phenomenon and the physical 

properties of stellar photospheric structure it represents. 

There are many observational programs which could be undertaken in order to 

further explore some of the phenomena discovered and theorized in this work.  High time 
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resolution photometry over entire cycles, where the time between sequential observations is 

less than 1/100th of the cycle, would be valuable for exploring the possibility of period 

variations between passbands on short time scales - this is not possible with the vast majority 

of existing data because most programs only observe at a frequency of less than one data-

point per cycle.  Such data, if sufficiently precise, would also allow accurate determinations 

of the phase lags between passbands and any variations therein.  If a program were 

undertaken with a large number of Cepheids, one could also explore possible general 

correlations between epoch lag and radius, furthering our understanding of stellar 

atmospheric structure.  High resolution spectroscopic observing programs would also be 

extremely beneficial.  Modern techniques for determining temperature variations and 

pulsation velocities could be utilized for more accurate separation of those effects from the 

photometric light curves.  Spectral line bisectors could be utilized for determining the 

amount of and variation in velocity spans between higher and lower layers of the 

photosphere during different phases in the pulsation, and these could be correlated with the 

passband epochs.  Similarly, radial velocity profiles from long and short wavelength regions 

of the spectrum could be used for exploring passband-dependant pulsational displacement 

curves.  Narrow-band and spectrophotometric work could also help to delineate the 

behaviour of the epoch lag with wavelength.  And observation of Cepheids in eclipsing 

binary systems in various passbands could be used for directly determining the radius 

specific to each passband. 

A deeper understanding of stellar photospheric structure, at least in regards to 

Cepheid pulsation, is clearly possible.  And with the proper data with which to accomplish it, 
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would clearly improve (at least) the period-luminosity relationship.  This is left to a future 

work. 
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Appendix A:  Heliocentric Julian Day and Radial Velocity Corrections 

 

 The following is a Matlab m-file script which can be used to convert geocentric 

Julian Days to heliocentric ones, in order to standardize measurement timings to the 

common frame of reference of the Sun.  It is assumed the user can convert local times of 

measurement to Julian times, if need be.  Also computed is the associated radial velocity 

correction, used to convert a geocentrically measured radial velocity to a heliocentric one, 

and the airmass.  The code was developed with reference to the 2005 Astronomical 

Almanac.  For those unfamiliar with the Matlab data analysis language, comment lines are 

indicated by the „%‟ symbol.  The code begins immediately: 

 

 
function result = HJDC(JD,lat,long,ra,dec) 
 
% Usage:  answer = HJDC(JD,lat,long,ra,dec); 
% Result is returned in arbitrary "answer" variable as a nx3 row-major matrix, where 
% n is number of JD input values.  1st column is Heliocentric Julian Day 
% corrections, 2nd column is heliocentric radial velocity corrections, 3rd column is airmass 
% Input: 
% JD  = full Geocentric Julian Day      day.day 
% lat = latitude of observation         deg.deg 
% long = west longitude of observation  deg.deg 
% RA = right ascension of target         hours.hr 
% dec = declination of target            deg.deg 
 
%DEFINITIONS 
vrot_eq = 465.1;  
% earth equatorial rotational linear velocity in m/s, based on spherical earth using quadratic-
% mean (polar-equatorial) radius; can be improved to take into account non-sphericity and 
% geographical elevations, but these are 2nd or 3rd order corrections at best. 
au = 1.49597870e11;     
% astronomical unit (m) 
cs = 173.14463348;       
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% speed of light (au/d) 
 
% BEGINNING OF COMPUTATIONS 
L = long/15; 
% west longitude of observatory in hours 
GMST = rem(18.697374558 + 24.06570982441908*(JD - 2451545.0),24); 
% Greenwich Mean Sidereal Time at JD 
LST = GMST - L; 
% Local Sidereal Time at JD and longitude 
ha = LST - ra; 
%local hour angle of target 
ha = ha*pi/12; 
lat = lat*pi/180; 
ra = ra*pi/12; 
dec = dec*pi/180; 
alt = asin(sin(lat).*sin(dec)+cos(lat).*cos(dec).*cos(ha)); 
zt = (pi/2 - alt); zt(zt > pi/2) = NaN; 
% true zenith angle, don‟t care about stuff below horizon 
 
A = ( 1.002432*cos(zt).^2 + 0.148386*cos(zt) + 0.0096467 ) ./ (cos(zt).^3 + ... 
0.149864*cos(zt).^2 + 0.0102963*cos(zt) + 0.000303978); 
% Airmass of target: Young, A. T. 1994. Air mass and refraction. Applied 
% Optics. 33:1108–1110. 
 
n = JD-2451545.0;  
% exact decimal day number from J2000.0 UT 12hr 
g = rem((357.528 + .9856003.*n).*pi/180,2.*pi); 
% mean anomaly, in radians, at day number n 
L = rem((280.46 + .9856474.*n).*pi/180,2.*pi); 
% mean longitude, in radians, at n 
lam = L + 1.915.*pi/180.*sin(g) + .020.*pi/180.*sin(2.*g);   
% ecliptic longitude, in radians, at n 
eps = 23.439.*pi/180 - .0000004.*pi/180.*n; 
% ecliptic obliquity, in radians, at n 
R = 1.00014 - 0.01671.*cos(g) - 0.00014.*cos(2.*g); 
% distance of earth from sun in au‟s at JD 
X = -R.*cos(lam); 
Y = -R.*cos(eps).*sin(lam);                        
Z = -R.*sin(eps).*sin(lam);                        
% rectangular coordinates of earth wrt solar system barycenter referred to equinox and 
%equator of J2000.0, in au's 
Xdot =  .0172.*sin(lam); 
Ydot = -.0158.*cos(lam);                           
Zdot = -.0068.*cos(lam);                           
% first deriv's of XYZ above, wrt time in days (au/d).  Note:  deriv‟s of XYZ w d/dt eps ~0 



151 

 

 

 

rv_rot = cos(lat).*cos(dec).*sin(ha).*vrot_eq;    
% rv in direction of target due to earth's rotational motion, +ve away, m/s  
rv_orb = -Xdot.*cos(ra).*cos(dec) - Ydot.*sin(ra).*cos(dec) - Zdot.*sin(dec);        
% rv due to earth's orbital motion, +ve away au/d 
rv_orb = rv_orb.*au/86400;      %convert to m/s 
RVC = rv_rot + rv_orb;                
RVC = round(RVC.*10)/10;  %rounded to 1 decimal place = 0.1 m/s. 
% Radial Velocity due to earth‟s rotation and orbital motion referred to barycenter, in 
%direction of target, +ve away. 
 
BJDC= 1/cs.*(X.*cos(ra).*cos(dec) + Y.*sin(ra).*cos(dec) + Z.*sin(dec)); 
% Barycentric Julian Day Correction.  ADD this to geocentric input JD 
% Otherwise known as Heliocentric JD (HJD) but there is ambiguity here. 
% Difference between HJD and BJD << BJDC  (~1s/~5min) in almost all cases, so only 
% important for very-high precision timing 
 
result = [BJDC(:) RVC(:) A(:)]; 
 
  



152 

 

 

 

Appendix B:  Listing of the Photometric Data 

 

Elements for the phase calculations:  Period = 3.1488d, EpochV = HJD 2453316.5166.  HJD‟s below are HJD – 2453316. 

 

HJD U Phase dU HJD B Phase dB HJD V Phase dV HJD R Phase dR HJD I Phase dI 

0.7207 0.0648 -0.2019 0.7211 0.0649 -0.6228 0.7277 0.0670 -0.8708 0.7218 0.0652 -1.0439 0.7285 0.0673 -1.2281 

0.7209 0.0649 -0.1982 0.7212 0.0650 -0.6363 0.7279 0.0671 -0.8859 0.7281 0.0672 -1.0353 0.7287 0.0673 -1.2251 

0.7269 0.0668 -0.2016 0.7274 0.0669 -0.6223 0.7598 0.0772 -0.8764 0.7283 0.0672 -1.0328 0.7606 0.0775 -1.2210 

0.7271 0.0668 -0.2001 0.7275 0.0670 -0.6121 0.7600 0.0773 -0.8754 0.7602 0.0773 -1.0368 0.7608 0.0775 -1.2222 

0.7590 0.0770 -0.1842 0.7594 0.0771 -0.6198 0.7705 0.0806 -0.8746 0.7604 0.0774 -1.0423 0.7713 0.0809 -1.2243 

0.7592 0.0770 -0.1850 0.7596 0.0772 -0.6178 0.7707 0.0807 -0.8754 0.7709 0.0808 -1.0254 0.7715 0.0809 -1.2271 

0.7698 0.0804 -0.1819 0.7701 0.0805 -0.6165 0.7804 0.0838 -0.8631 0.7711 0.0808 -1.0324 0.7813 0.0840 -1.2006 

0.7699 0.0804 -0.1781 0.7703 0.0806 -0.6157 0.7806 0.0838 -0.8674 0.7808 0.0839 -1.0125 0.7814 0.0841 -1.2004 

0.7797 0.0835 -0.1735 0.7801 0.0837 -0.6147 0.7949 0.0884 -0.8699 0.7810 0.0840 -1.0100 0.7956 0.0886 -1.2157 

0.7942 0.0881 -0.1652 0.7802 0.0837 -0.6176 0.7950 0.0884 -0.8685 0.7952 0.0885 -1.0161 0.7958 0.0887 -1.2153 

0.7943 0.0882 -0.1719 0.7945 0.0882 -0.6034 0.8022 0.0907 -0.8692 0.7954 0.0885 -1.0170 0.8029 0.0909 -1.2177 

0.8014 0.0904 -0.1711 0.7947 0.0883 -0.6012 0.8024 0.0908 -0.8669 0.8026 0.0908 -1.0283 0.8031 0.0910 -1.2228 

0.8015 0.0905 -0.1654 0.8017 0.0905 -0.6111 0.8136 0.0943 -0.8623 0.8028 0.0909 -1.0221 0.8143 0.0945 -1.2126 

0.8129 0.0941 -0.1616 0.8019 0.0906 -0.6098 0.8138 0.0944 -0.8642 0.8139 0.0944 -1.0147 0.8144 0.0946 -1.2072 

0.8131 0.0941 -0.1629 0.8020 0.0906 -0.6121 0.8205 0.0965 -0.8671 0.8209 0.0966 -1.0169 0.8212 0.0967 -1.2210 

0.8198 0.0963 -0.1607 0.8132 0.0942 -0.6007 0.8207 0.0966 -0.8619 0.8211 0.0967 -1.0211 0.8214 0.0968 -1.2189 

0.8200 0.0963 -0.1609 0.8134 0.0942 -0.6041 0.8320 0.1001 -0.8541 0.8323 0.1002 -1.0152 0.8326 0.1004 -1.2103 
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0.8312 0.0999 -0.1610 0.8202 0.0964 -0.6055 0.8321 0.1002 -0.8553 0.8325 0.1003 -1.0168 0.8328 0.1004 -1.2115 

0.8314 0.1000 -0.1535 0.8316 0.1000 -0.5946 0.8433 0.1037 -0.8467 0.8436 0.1038 -1.0015 0.8440 0.1040 -1.1909 

0.8425 0.1035 -0.1570 0.8318 0.1001 -0.5949 0.8434 0.1038 -0.8428 0.8438 0.1039 -0.9996 0.8441 0.1040 -1.1894 

0.8427 0.1036 -0.1465 0.8429 0.1036 -0.5869 0.8615 0.1095 -0.8524 0.8619 0.1096 -1.0059 0.8622 0.1097 -1.1985 

0.8606 0.1092 -0.1390 0.8431 0.1037 -0.5877 0.8617 0.1096 -0.8485 0.8620 0.1097 -1.0059 0.8624 0.1098 -1.1979 

0.8608 0.1093 -0.1355 0.8610 0.1094 -0.5835 0.8797 0.1153 -0.8536 0.8801 0.1154 -0.9959 0.8690 0.1119 -1.1749 

0.8675 0.1114 -0.1199 0.8612 0.1094 -0.5853 0.8799 0.1154 -0.8583 0.8803 0.1155 -0.9902 0.8692 0.1120 -1.1755 

0.8677 0.1115 -0.1221 0.8794 0.1152 -0.5869 0.9264 0.1301 -0.8117 0.9266 0.1302 -0.9790 0.8805 0.1156 -1.1894 

0.8790 0.1151 -0.1233 0.8796 0.1153 -0.5886 0.9338 0.1325 -0.8237 0.9267 0.1302 -0.9746 0.8807 0.1156 -1.1828 

0.8792 0.1151 -0.1243 0.8869 0.1176 -0.5615 0.9340 0.1325 -0.8239 0.9342 0.1326 -0.9864 0.8879 0.1179 -1.1797 

0.8865 0.1175 -0.1216 0.8870 0.1176 -0.5602 0.9460 0.1364 -0.8351 0.9343 0.1327 -0.9856 0.8881 0.1180 -1.1873 

0.8867 0.1175 -0.1141 0.9259 0.1300 -0.5475 0.9461 0.1364 -0.8288 0.9463 0.1365 -0.9994 0.8883 0.1180 -1.1784 

0.9255 0.1299 -0.1006 0.9260 0.1300 -0.5458 0.9648 0.1423 -0.8111 0.9465 0.1365 -0.9990 0.9269 0.1303 -1.1775 

0.9257 0.1299 -0.1004 0.9335 0.1324 -0.5480 0.9650 0.1424 -0.8127 0.9531 0.1386 -0.9636 0.9271 0.1304 -1.1804 

0.9331 0.1323 -0.0978 0.9336 0.1324 -0.5454 0.9724 0.1448 -0.8197 0.9533 0.1387 -0.9618 0.9345 0.1327 -1.1863 

0.9333 0.1323 -0.0983 0.9456 0.1362 -0.5564 0.9726 0.1448 -0.8202 0.9652 0.1424 -0.9786 0.9347 0.1328 -1.1838 

0.9453 0.1361 -0.1077 0.9458 0.1363 -0.5533 0.9954 0.1520 -0.8035 0.9653 0.1425 -0.9820 0.9467 0.1366 -1.1981 

0.9455 0.1362 -0.0986 0.9524 0.1384 -0.5425 0.9956 0.1521 -0.8101 0.9655 0.1426 -0.9806 0.9468 0.1366 -1.1962 

0.9521 0.1383 -0.0913 0.9526 0.1384 -0.5295 1.0021 0.1542 -0.7976 0.9728 0.1449 -0.9903 0.9535 0.1387 -1.1738 

0.9522 0.1383 -0.0907 0.9643 0.1422 -0.5423 1.0148 0.1582 -0.8170 0.9729 0.1449 -0.9925 0.9537 0.1388 -1.1713 

0.9640 0.1421 -0.0778 0.9645 0.1422 -0.5451 1.0150 0.1583 -0.8170 0.9957 0.1522 -0.9750 0.9657 0.1426 -1.1805 

0.9641 0.1421 -0.0832 0.9646 0.1423 -0.5358 1.0222 0.1606 -0.8085 0.9959 0.1522 -0.9766 0.9659 0.1427 -1.1789 

0.9718 0.1445 -0.0898 0.9721 0.1446 -0.5377 1.0223 0.1606 -0.8071 1.0025 0.1543 -0.9676 0.9731 0.1450 -1.1930 

0.9719 0.1446 -0.0795 0.9722 0.1447 -0.5390 3.7220 0.0179 -0.8790 1.0152 0.1583 -0.9749 0.9733 0.1450 -1.1930 

0.9947 0.1518 -0.0678 0.9951 0.1519 -0.5236 3.7279 0.0198 -0.8918 3.7217 0.0179 -1.0255 0.9961 0.1523 -1.1816 

0.9949 0.1519 -0.0796 1.0016 0.1540 -0.5264 3.7291 0.0202 -0.8798 3.7277 0.0198 -1.0367 0.9962 0.1523 -1.1799 
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1.0013 0.1539 -0.0758 1.0018 0.1541 -0.5095 3.7355 0.0222 -0.8802 3.7293 0.0203 -1.0300 1.0028 0.1544 -1.1698 

1.0015 0.1540 -0.0754 1.0020 0.1541 -0.5046 3.7405 0.0238 -0.8899 3.7353 0.0222 -1.0281 1.0029 0.1544 -1.1770 

1.0141 0.1580 -0.0666 1.0145 0.1581 -0.5319 3.7415 0.0241 -0.8811 3.7403 0.0238 -1.0376 1.0155 0.1584 -1.1821 

1.0143 0.1580 -0.0622 1.0146 0.1582 -0.5276 3.7524 0.0276 -0.8819 3.7416 0.0242 -1.0242 1.0157 0.1585 -1.1814 

1.0215 0.1603 -0.0529 1.0219 0.1605 -0.5244 3.7533 0.0279 -0.8806 3.7522 0.0276 -1.0311 1.0229 0.1608 -1.1923 

1.0217 0.1604 -0.0547 1.0220 0.1605 -0.5163 3.7663 0.0320 -0.8800 3.7535 0.0280 -1.0289 1.0230 0.1608 -1.1971 

3.7226 0.0181 -0.2377 3.7222 0.0180 -0.6468 3.8072 0.0450 -0.8916 3.7666 0.0321 -1.0191 3.7215 0.0178 -1.2218 

3.7283 0.0200 -0.2404 3.7228 0.0182 -0.6371 3.8073 0.0451 -0.8914 3.8143 0.0473 -1.0467 3.7275 0.0197 -1.2187 

3.7287 0.0201 -0.2420 3.7281 0.0199 -0.6528 3.8139 0.0471 -0.8886 3.8144 0.0473 -1.0470 3.7295 0.0203 -1.2102 

3.7359 0.0224 -0.2387 3.7289 0.0201 -0.6454 3.8140 0.0472 -0.8908 3.8314 0.0527 -1.0253 3.7351 0.0221 -1.2014 

3.7361 0.0224 -0.2177 3.7357 0.0223 -0.6434 3.8310 0.0526 -0.8766 3.8316 0.0528 -1.0354 3.7401 0.0237 -1.2177 

3.7409 0.0240 -0.2306 3.7407 0.0239 -0.6505 3.8312 0.0526 -0.8822 3.8407 0.0557 -1.0292 3.7419 0.0243 -1.2088 

3.7411 0.0240 -0.2293 3.7413 0.0241 -0.6511 3.8403 0.0555 -0.8813 3.8408 0.0557 -1.0320 3.7520 0.0275 -1.2170 

3.7528 0.0277 -0.2288 3.7526 0.0277 -0.6462 3.8405 0.0556 -0.8838 3.8455 0.0572 -1.0340 3.7537 0.0280 -1.2130 

3.7530 0.0278 -0.2211 3.7531 0.0278 -0.6443 3.8450 0.0570 -0.8823 3.8496 0.0585 -1.0296 3.7668 0.0322 -1.2105 

3.7660 0.0319 -0.2133 3.7662 0.0320 -0.6440 3.8492 0.0584 -0.8789 3.8498 0.0585 -1.0251 3.8318 0.0528 -1.2226 

3.7670 0.0323 -0.2181 3.7672 0.0323 -0.6340 3.8494 0.0584 -0.8729 4.0138 0.1106 -1.0055 3.8320 0.0529 -1.2238 

3.8064 0.0448 -0.2019 3.8068 0.0449 -0.6359 4.0134 0.1105 -0.8489 4.0139 0.1107 -1.0037 3.8411 0.0558 -1.2151 

3.8066 0.0448 -0.2049 3.8070 0.0449 -0.6372 4.0135 0.1106 -0.8487 4.0190 0.1123 -1.0068 3.8412 0.0558 -1.2140 

3.8131 0.0469 -0.2000 3.8135 0.0470 -0.6425 4.0186 0.1121 -0.8530 4.0192 0.1123 -1.0085 3.8456 0.0572 -1.2222 

3.8132 0.0469 -0.2022 3.8137 0.0471 -0.6451 4.0187 0.1122 -0.8488 4.6875 0.3246 -0.8532 3.8458 0.0573 -1.2257 

3.8302 0.0523 -0.2041 3.8306 0.0525 -0.6160 4.0231 0.1136 -0.8495 4.6877 0.3246 -0.8421 4.0141 0.1107 -1.1990 

3.8304 0.0524 -0.2033 3.8308 0.0525 -0.6236 4.0233 0.1137 -0.8460 4.6922 0.3261 -0.8424 4.0143 0.1108 -1.1991 

3.8395 0.0553 -0.1990 3.8399 0.0554 -0.6303 4.0281 0.1152 -0.8419 4.6923 0.3261 -0.8430 4.0194 0.1124 -1.1988 

3.8397 0.0553 -0.1978 3.8401 0.0555 -0.6380 4.6872 0.3245 -0.6397 4.7060 0.3305 -0.8496 4.0196 0.1125 -1.1844 

3.8442 0.0568 -0.1933 3.8446 0.0569 -0.6374 4.6873 0.3245 -0.6438 4.7061 0.3305 -0.8382 4.0239 0.1138 -1.2130 
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3.8444 0.0568 -0.1921 3.8447 0.0569 -0.6336 4.6918 0.3260 -0.6578 4.7108 0.3320 -0.8372 4.0240 0.1139 -1.2129 

3.8484 0.0581 -0.1825 3.8488 0.0582 -0.6339 4.6920 0.3260 -0.6594 4.7109 0.3320 -0.8405 4.6879 0.3247 -1.0803 

4.0126 0.1103 -0.1533 3.8490 0.0583 -0.6242 4.7051 0.3302 -0.6292 4.7238 0.3361 -0.8446 4.6880 0.3248 -1.0826 

4.0178 0.1119 -0.1412 4.0130 0.1104 -0.5778 4.7058 0.3304 -0.6474 4.7310 0.3384 -0.8415 4.6925 0.3262 -1.0752 

4.0180 0.1120 -0.1381 4.0132 0.1104 -0.5814 4.7102 0.3318 -0.6408 4.7311 0.3384 -0.8409 4.6927 0.3262 -1.0940 

4.0224 0.1134 -0.1467 4.0182 0.1120 -0.5827 4.7106 0.3319 -0.6360 4.7366 0.3402 -0.8385 4.7063 0.3306 -1.0881 

4.0226 0.1134 -0.1439 4.0184 0.1121 -0.5839 4.7234 0.3360 -0.6379 4.7488 0.3441 -0.8354 4.7065 0.3306 -1.0869 

4.0273 0.1149 -0.1326 4.0228 0.1135 -0.5788 4.7236 0.3361 -0.6394 4.7490 0.3441 -0.8209 4.7111 0.3321 -1.0941 

4.0275 0.1150 -0.1222 4.0229 0.1135 -0.5799 4.7306 0.3383 -0.6369 4.7538 0.3457 -0.8399 4.7113 0.3321 -1.0901 

4.6865 0.3243 0.2418 4.0277 0.1151 -0.5729 4.7308 0.3383 -0.6402 4.7656 0.3494 -0.8366 4.7315 0.3386 -1.0720 

4.6912 0.3258 0.2302 4.0279 0.1151 -0.5669 4.7362 0.3401 -0.6345 4.7657 0.3494 -0.8380 4.7316 0.3386 -1.0726 

4.6913 0.3258 0.2391 4.6870 0.3244 -0.2572 4.7364 0.3401 -0.6376 4.7825 0.3548 -0.8260 4.7371 0.3403 -1.0736 

4.7044 0.3300 0.2422 4.6915 0.3259 -0.2754 4.7485 0.3440 -0.6224 4.7826 0.3548 -0.8234 4.7373 0.3404 -1.0750 

4.7046 0.3300 0.2596 4.6917 0.3259 -0.2701 4.7487 0.3440 -0.6319 4.7893 0.3569 -0.8263 4.7494 0.3442 -1.0650 

4.7096 0.3316 0.2427 4.7048 0.3301 -0.2594 4.7534 0.3455 -0.6299 4.7895 0.3570 -0.8213 4.7495 0.3443 -1.0630 

4.7097 0.3316 0.2441 4.7099 0.3317 -0.2714 4.7536 0.3456 -0.6299 4.8285 0.3694 -0.8222 4.7543 0.3458 -1.0710 

4.7223 0.3356 0.2521 4.7101 0.3317 -0.2780 4.7652 0.3493 -0.6298 4.8286 0.3694 -0.8215 4.7545 0.3459 -1.0747 

4.7225 0.3357 0.2439 4.7228 0.3358 -0.2544 4.7654 0.3493 -0.6306 4.8352 0.3715 -0.8162 4.7660 0.3495 -1.0619 

4.7296 0.3380 0.2589 4.7300 0.3381 -0.2552 4.7821 0.3546 -0.6212 4.8354 0.3716 -0.8063 4.7662 0.3496 -1.0682 

4.7298 0.3380 0.2596 4.7301 0.3381 -0.2540 4.7823 0.3547 -0.6220 4.8557 0.3780 -0.8158 4.7830 0.3549 -1.0633 

4.7354 0.3398 0.2637 4.7357 0.3399 -0.2542 4.7890 0.3568 -0.6212 4.8558 0.3780 -0.8172 4.7831 0.3550 -1.0618 

4.7355 0.3398 0.2579 4.7359 0.3399 -0.2552 4.7892 0.3569 -0.6208 4.8718 0.3831 -0.8157 4.7900 0.3571 -1.0675 

4.7476 0.3437 0.2658 4.7479 0.3438 -0.2516 4.8281 0.3692 -0.6116 4.8720 0.3832 -0.8152 4.7901 0.3572 -1.0691 

4.7478 0.3437 0.2706 4.7481 0.3438 -0.2466 4.8283 0.3693 -0.6160 4.8786 0.3853 -0.8102 4.8289 0.3695 -1.0628 

4.7525 0.3452 0.2665 4.7528 0.3453 -0.2479 4.8349 0.3714 -0.6099 4.8788 0.3853 -0.8120 4.8291 0.3696 -1.0597 

4.7527 0.3453 0.2692 4.7530 0.3454 -0.2452 4.8351 0.3714 -0.6131 4.8937 0.3901 -0.8064 4.8357 0.3717 -1.0564 
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4.7644 0.3490 0.2632 4.7647 0.3491 -0.2468 4.8485 0.3757 -0.6082 4.8938 0.3901 -0.8065 4.8359 0.3717 -1.0551 

4.7645 0.3491 0.2692 4.7649 0.3492 -0.2477 4.8487 0.3758 -0.6126 4.9008 0.3923 -0.7961 4.8494 0.3760 -1.0563 

4.7813 0.3544 0.2833 4.7817 0.3545 -0.2493 4.8553 0.3779 -0.6043 4.9010 0.3924 -0.7963 4.8495 0.3760 -1.0535 

4.7815 0.3544 0.2718 4.7818 0.3545 -0.2487 4.8555 0.3779 -0.6063 4.9261 0.4004 -0.8126 4.8561 0.3781 -1.0540 

4.7882 0.3566 0.2814 4.7885 0.3567 -0.2375 4.8714 0.3830 -0.6046 4.9263 0.4004 -0.8158 4.8563 0.3782 -1.0566 

4.7883 0.3566 0.2800 4.7887 0.3567 -0.2332 4.8716 0.3831 -0.6067 4.9331 0.4026 -0.8033 4.8723 0.3833 -1.0523 

4.8272 0.3690 0.2988 4.8276 0.3691 -0.2334 4.8783 0.3852 -0.6075 4.9333 0.4026 -0.8058 4.8724 0.3833 -1.0538 

4.8274 0.3690 0.2988 4.8278 0.3691 -0.2327 4.8784 0.3852 -0.6076 4.9489 0.4076 -0.8013 4.8791 0.3854 -1.0525 

4.8340 0.3711 0.3022 4.8344 0.3712 -0.2304 4.8933 0.3900 -0.5972 4.9490 0.4076 -0.8030 4.8793 0.3855 -1.0523 

4.8342 0.3712 0.3095 4.8345 0.3713 -0.2295 4.8935 0.3900 -0.5999 4.9569 0.4101 -0.7916 4.8942 0.3902 -1.0498 

4.8476 0.3754 0.3074 4.8479 0.3755 -0.2183 4.9004 0.3922 -0.5986 5.8735 0.7012 -0.8568 4.8943 0.3903 -1.0444 

4.8478 0.3755 0.3180 4.8481 0.3756 -0.2210 4.9006 0.3923 -0.5954 5.8737 0.7013 -0.8565 4.9014 0.3925 -1.0461 

4.8545 0.3776 0.3096 4.8548 0.3777 -0.2198 4.9258 0.4003 -0.5923 5.8792 0.7030 -0.8583 4.9016 0.3926 -1.0492 

4.8547 0.3777 0.3094 4.8709 0.3828 -0.2150 4.9259 0.4003 -0.5909 5.8794 0.7031 -0.8543 4.9267 0.4005 -1.0396 

4.8705 0.3827 0.3158 4.8710 0.3829 -0.2155 4.9328 0.4025 -0.5903 6.6917 0.9611 -1.0279 4.9268 0.4006 -1.0424 

4.8707 0.3828 0.3174 4.8778 0.3850 -0.2116 4.9330 0.4025 -0.5892 6.6919 0.9611 -1.0363 4.9336 0.4027 -1.0420 

4.8775 0.3849 0.3199 4.8780 0.3851 -0.2100 4.9485 0.4075 -0.5936 6.6968 0.9627 -1.0403 4.9338 0.4028 -1.0409 

4.8776 0.3850 0.3169 4.8928 0.3898 -0.2060 4.9487 0.4075 -0.5963 6.6970 0.9628 -1.0331 4.9493 0.4077 -1.0524 

4.8924 0.3897 0.3263 4.8929 0.3898 -0.2027 4.9565 0.4100 -0.5851 6.7017 0.9642 -1.0241 4.9495 0.4078 -1.0447 

4.8926 0.3897 0.3304 4.8999 0.3920 -0.2109 4.9567 0.4101 -0.5869 6.7018 0.9643 -1.0290 4.9575 0.4103 -1.0378 

4.8996 0.3919 0.3251 4.9001 0.3921 -0.2063 5.8731 0.7011 -0.6681 6.7158 0.9687 -1.0346 4.9576 0.4104 -1.0398 

4.8997 0.3920 0.3233 4.9253 0.4001 -0.2005 5.8733 0.7012 -0.6686 6.7160 0.9688 -1.0331 5.8742 0.7014 -1.0781 

4.9250 0.4000 0.3310 4.9255 0.4002 -0.2009 5.8788 0.7029 -0.6716 6.7205 0.9702 -1.0234 5.8743 0.7015 -1.0817 

4.9251 0.4001 0.3345 4.9323 0.4023 -0.1987 5.8790 0.7030 -0.6729 6.7207 0.9703 -1.0241 5.8799 0.7033 -1.0694 

4.9319 0.4022 0.3331 4.9324 0.4024 -0.2021 5.8844 0.7047 -0.6709 6.7255 0.9718 -1.0197 5.8801 0.7033 -1.0742 

4.9321 0.4023 0.3364 4.9479 0.4073 -0.1897 5.8957 0.7083 -0.6775 6.7426 0.9773 -1.0256 5.8854 0.7050 -1.0784 
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4.9475 0.4072 0.3355 4.9480 0.4073 -0.1884 5.8959 0.7084 -0.6811 6.7428 0.9773 -1.0288 5.8856 0.7051 -1.0765 

4.9477 0.4072 0.3428 4.9557 0.4098 -0.1829 6.6964 0.9626 -0.8811 6.7474 0.9788 -1.0294 6.6922 0.9613 -1.2017 

4.9554 0.4097 0.3446 5.8783 0.7027 -0.3580 6.6966 0.9626 -0.8905 6.7475 0.9788 -1.0196 6.6924 0.9613 -1.2184 

4.9556 0.4097 0.3389 5.8784 0.7028 -0.3542 6.7013 0.9641 -0.8849 6.7521 0.9803 -1.0254 6.6975 0.9629 -1.2157 

5.8779 0.7026 0.1099 5.8838 0.7045 -0.3539 6.7155 0.9686 -0.8802 6.7523 0.9803 -1.0216 6.7022 0.9644 -1.2183 

5.8781 0.7027 0.1135 5.8840 0.7046 -0.3493 6.7156 0.9687 -0.8868 6.7674 0.9851 -1.0372 6.7024 0.9645 -1.2067 

5.8834 0.7044 0.1116 5.8952 0.7081 -0.3286 6.7202 0.9701 -0.8822 6.7676 0.9852 -1.0293 6.7164 0.9689 -1.2223 

5.8836 0.7045 0.1039 6.6959 0.9624 -0.6373 6.7204 0.9702 -0.8945 6.7723 0.9867 -1.0262 6.7165 0.9690 -1.2205 

5.8948 0.7080 0.0946 6.7008 0.9640 -0.6414 6.7249 0.9716 -0.8858 6.7725 0.9867 -1.0235 6.7210 0.9704 -1.2079 

5.8950 0.7081 0.1041 6.7010 0.9640 -0.6403 6.7423 0.9771 -0.8872 6.7771 0.9882 -1.0277 6.7212 0.9705 -1.2119 

6.6904 0.9607 -0.2322 6.7149 0.9685 -0.6520 6.7425 0.9772 -0.8878 6.7773 0.9883 -1.0370 6.7258 0.9719 -1.2133 

6.6906 0.9607 -0.2284 6.7151 0.9685 -0.6569 6.7470 0.9786 -0.8790 6.7985 0.9950 -1.0310 6.7260 0.9720 -1.2128 

6.6957 0.9624 -0.2478 6.7197 0.9700 -0.6490 6.7472 0.9787 -0.8790 6.7986 0.9950 -1.0317 6.7432 0.9774 -1.2160 

6.7005 0.9639 -0.2319 6.7199 0.9700 -0.6435 6.7518 0.9802 -0.8794 6.8116 0.9992 -1.0354 6.7433 0.9775 -1.2183 

6.7007 0.9639 -0.2187 6.7418 0.9770 -0.6578 6.7520 0.9802 -0.8811 6.8118 0.9992 -1.0311 6.7479 0.9789 -1.2121 

6.7147 0.9684 -0.2393 6.7419 0.9770 -0.6504 6.7671 0.9850 -0.8899 6.8163 0.0007 -1.0416 6.7481 0.9790 -1.2212 

6.7193 0.9699 -0.2100 6.7465 0.9785 -0.6474 6.7673 0.9851 -0.9005 6.8165 0.0007 -1.0446 6.7527 0.9804 -1.2142 

6.7195 0.9699 -0.2219 6.7467 0.9785 -0.6509 6.7720 0.9866 -0.8770 6.8417 0.0087 -1.0243 6.7528 0.9805 -1.2232 

6.7240 0.9714 -0.2192 6.7513 0.9800 -0.6555 6.7721 0.9866 -0.8777 6.8447 0.0097 -1.0375 6.7679 0.9853 -1.2152 

6.7242 0.9714 -0.2167 6.7515 0.9801 -0.6558 6.7768 0.9881 -0.8949 6.8477 0.0106 -1.0430 6.7681 0.9853 -1.2240 

6.7414 0.9769 -0.2334 6.7666 0.9849 -0.6571 6.7770 0.9882 -0.8974 6.8500 0.0113 -1.0411 6.7728 0.9868 -1.2067 

6.7416 0.9769 -0.2303 6.7668 0.9849 -0.6541 6.7932 0.9933 -0.8821 6.8530 0.0123 -1.0353 6.7730 0.9869 -1.2050 

6.7462 0.9784 -0.2246 6.7715 0.9864 -0.6633 6.7934 0.9934 -0.8808 8.6940 0.5970 -0.7799 6.7776 0.9884 -1.2189 

6.7463 0.9784 -0.2191 6.7717 0.9865 -0.6501 6.7981 0.9949 -0.8830 8.6942 0.5970 -0.7765 6.7778 0.9884 -1.2215 

6.7509 0.9799 -0.2288 6.7880 0.9917 -0.6455 6.7983 0.9949 -0.8856 8.8525 0.6473 -0.8043 6.7894 0.9921 -1.2156 

6.7511 0.9800 -0.2190 6.7976 0.9947 -0.6493 6.8112 0.9990 -0.8801 8.8527 0.6474 -0.8082 6.7896 0.9922 -1.2217 
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6.7663 0.9848 -0.2231 6.7978 0.9948 -0.6525 6.8114 0.9991 -0.8879 8.8565 0.6486 -0.8133 6.7941 0.9936 -1.2191 

6.7664 0.9848 -0.2192 6.8107 0.9989 -0.6471 6.8159 0.0005 -0.8966 8.8567 0.6487 -0.8044 6.7943 0.9937 -1.2185 

6.7713 0.9864 -0.2242 6.8109 0.9989 -0.6457 6.8161 0.0006 -0.8961 8.8609 0.6500 -0.8021 6.7990 0.9951 -1.2074 

6.7759 0.9878 -0.2353 6.8202 0.0019 -0.6479 6.8415 0.0087 -0.8921 8.8611 0.6500 -0.8089 6.7991 0.9952 -1.2111 

6.7761 0.9879 -0.2443 6.8437 0.0094 -0.6509 6.8446 0.0096 -0.8902 8.8714 0.6533 -0.8261 6.8121 0.9993 -1.2200 

6.7877 0.9916 -0.2303 6.8467 0.0103 -0.6493 6.8469 0.0104 -0.8828 8.8715 0.6534 -0.8130 6.8122 0.9994 -1.2060 

6.7878 0.9916 -0.2274 6.8490 0.0110 -0.6440 6.8498 0.0113 -0.8807 8.8759 0.6547 -0.8097 6.8168 0.0008 -1.2239 

6.7973 0.9946 -0.2276 6.8519 0.0120 -0.6473 6.8521 0.0120 -0.8940 8.8801 0.6561 -0.8154 6.8170 0.0009 -1.2226 

6.7974 0.9947 -0.2215 8.6935 0.5968 -0.1942 6.8618 0.0151 -0.8982 8.8906 0.6594 -0.8104 6.8426 0.0090 -1.2346 

6.8104 0.9988 -0.2148 8.8517 0.6471 -0.2620 8.6937 0.5969 -0.5706 8.8974 0.6616 -0.8359 6.8456 0.0099 -1.2190 

6.8106 0.9988 -0.2109 8.8519 0.6471 -0.2792 8.6938 0.5969 -0.5840 8.8975 0.6616 -0.8275 6.8479 0.0107 -1.2220 

6.8151 0.0003 -0.2510 8.8559 0.6484 -0.2635 8.8520 0.6472 -0.6179 8.9017 0.6630 -0.8301 6.8508 0.0116 -1.2248 

6.8153 0.0003 -0.2486 8.8560 0.6484 -0.2657 8.8522 0.6472 -0.6236 8.9019 0.6630 -0.8236 6.8532 0.0124 -1.2256 

6.8198 0.0018 -0.2503 8.8601 0.6497 -0.2664 8.8562 0.6485 -0.6107 8.9132 0.6666 -0.8256 8.6943 0.5971 -1.0195 

6.8200 0.0018 -0.2447 8.8603 0.6498 -0.2565 8.8564 0.6485 -0.6128 8.9172 0.6679 -0.8223 8.6945 0.5971 -1.0132 

6.8404 0.0083 -0.2326 8.8705 0.6530 -0.2655 8.8605 0.6498 -0.6133 8.9174 0.6679 -0.8280 8.8529 0.6474 -1.0369 

6.8458 0.0100 -0.2304 8.8707 0.6531 -0.2745 8.8606 0.6499 -0.6158 8.9214 0.6692 -0.8369 8.8530 0.6475 -1.0452 

6.8488 0.0110 -0.2190 8.8749 0.6544 -0.2616 8.8709 0.6531 -0.6227 8.9216 0.6693 -0.8252 8.8569 0.6487 -1.0341 

6.8511 0.0117 -0.2179 8.8751 0.6545 -0.2745 8.8710 0.6532 -0.6235 8.9322 0.6726 -0.8321 8.8570 0.6488 -1.0305 

6.8605 0.0147 -0.2320 8.8792 0.6558 -0.2751 8.8753 0.6545 -0.6155 8.9324 0.6727 -0.8315 8.8613 0.6501 -1.0384 

8.6931 0.5967 0.3244 8.8898 0.6592 -0.2854 8.8754 0.6546 -0.6328 8.9365 0.6740 -0.8492 8.8717 0.6534 -1.0398 

8.8514 0.6469 0.2243 8.8965 0.6613 -0.2891 8.8796 0.6559 -0.6247 8.9367 0.6741 -0.8323 8.8719 0.6535 -1.0341 

8.8555 0.6483 0.2208 8.8967 0.6613 -0.2870 8.8798 0.6560 -0.6156 8.9412 0.6755 -0.8357 8.8761 0.6548 -1.0417 

8.8557 0.6483 0.2320 8.9009 0.6627 -0.2909 8.8902 0.6593 -0.6317 8.9414 0.6755 -0.8523 8.8762 0.6549 -1.0458 

8.8598 0.6496 0.2331 8.9011 0.6627 -0.2969 8.8904 0.6593 -0.6247 8.9525 0.6791 -0.8380 8.8804 0.6562 -1.0378 

8.8600 0.6497 0.2124 8.9122 0.6663 -0.2850 8.8968 0.6614 -0.6445 8.9526 0.6791 -0.8222 8.8806 0.6562 -1.0414 
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8.8702 0.6529 0.2145 8.9123 0.6663 -0.2750 8.8970 0.6614 -0.6395 8.9568 0.6804 -0.8497 8.8911 0.6596 -1.0545 

8.8704 0.6530 0.2171 8.9164 0.6676 -0.2919 8.9014 0.6629 -0.6292 8.9570 0.6805 -0.8413 8.8912 0.6596 -1.0500 

8.8746 0.6543 0.2058 8.9166 0.6677 -0.2743 8.9125 0.6664 -0.6456 8.9571 0.6805 -0.8275 8.8977 0.6617 -1.0408 

8.8747 0.6544 0.2153 8.9207 0.6690 -0.2959 8.9127 0.6664 -0.6290 8.9612 0.6818 -0.8237 8.8979 0.6617 -1.0428 

8.8789 0.6557 0.1851 8.9208 0.6690 -0.2867 8.9167 0.6677 -0.6350 8.9613 0.6819 -0.8323 8.9021 0.6631 -1.0550 

8.8791 0.6557 0.2146 8.9314 0.6724 -0.2950 8.9169 0.6678 -0.6271 8.9726 0.6855 -0.8385 8.9022 0.6631 -1.0437 

8.8895 0.6591 0.2074 8.9316 0.6724 -0.2853 8.9210 0.6691 -0.6255 8.9728 0.6855 -0.8463 8.9133 0.6666 -1.0526 

8.8897 0.6591 0.1869 8.9357 0.6737 -0.2903 8.9212 0.6691 -0.6288 8.9769 0.6868 -0.8514 8.9135 0.6667 -1.0387 

8.8962 0.6612 0.2099 8.9359 0.6738 -0.3010 8.9317 0.6725 -0.6421 8.9770 0.6869 -0.8400 8.9176 0.6680 -1.0511 

8.8963 0.6612 0.2124 8.9400 0.6751 -0.3206 8.9319 0.6725 -0.6454 8.9817 0.6884 -0.8461 8.9177 0.6680 -1.0371 

8.9006 0.6626 0.1905 8.9402 0.6752 -0.3048 8.9361 0.6738 -0.6316 9.7115 0.9201 -1.0228 8.9218 0.6693 -1.0455 

8.9008 0.6626 0.2107 8.9403 0.6752 -0.2895 8.9362 0.6739 -0.6385 9.7117 0.9202 -1.0159 8.9220 0.6694 -1.0585 

8.9118 0.6662 0.1778 8.9516 0.6788 -0.3191 8.9405 0.6753 -0.6379 9.7159 0.9215 -1.0224 8.9326 0.6727 -1.0723 

8.9120 0.6662 0.1855 8.9518 0.6788 -0.3111 8.9407 0.6753 -0.6442 9.7161 0.9216 -1.0180 8.9327 0.6728 -1.0770 

8.9161 0.6675 0.1970 8.9560 0.6802 -0.3316 8.9408 0.6754 -0.6313 9.7202 0.9229 -1.0083 8.9369 0.6741 -1.0341 

8.9162 0.6675 0.1870 8.9562 0.6802 -0.2954 8.9520 0.6789 -0.6520 9.7204 0.9229 -1.0146 8.9370 0.6742 -1.0598 

8.9203 0.6688 0.1821 8.9603 0.6816 -0.3194 8.9521 0.6790 -0.6497 9.7730 0.9396 -1.0255 8.9415 0.6756 -1.0645 

8.9205 0.6689 0.1666 8.9605 0.6816 -0.2943 8.9563 0.6803 -0.6511 9.7731 0.9397 -1.0294 8.9417 0.6756 -1.0445 

8.9310 0.6723 0.1592 8.9718 0.6852 -0.3318 8.9565 0.6803 -0.6418 9.7773 0.9410 -1.0208 8.9528 0.6792 -1.0811 

8.9312 0.6723 0.1836 8.9720 0.6853 -0.3396 8.9607 0.6817 -0.6522 9.7774 0.9411 -1.0236 8.9530 0.6792 -1.0515 

8.9354 0.6736 0.1664 8.9760 0.6865 -0.3221 8.9608 0.6817 -0.6299 9.7817 0.9424 -1.0227 8.9573 0.6806 -1.0508 

8.9355 0.6737 0.1749 8.9762 0.6866 -0.3049 8.9722 0.6853 -0.6546 9.7819 0.9425 -1.0217 8.9575 0.6807 -1.0590 

8.9397 0.6750 0.1701 8.9808 0.6880 -0.3285 8.9723 0.6854 -0.6666 9.7923 0.9458 -1.0310 8.9615 0.6819 -1.0739 

8.9399 0.6751 0.1769 8.9809 0.6881 -0.3093 8.9811 0.6882 -0.6513 9.7924 0.9458 -1.0310 8.9617 0.6820 -1.0607 

8.9513 0.6787 0.1701 9.7107 0.9198 -0.6435 8.9813 0.6882 -0.6556 9.7964 0.9471 -1.0316 8.9730 0.6856 -1.0504 

8.9514 0.6787 0.1433 9.7108 0.9199 -0.6402 9.7110 0.9200 -0.8677 9.7966 0.9471 -1.0300 8.9731 0.6856 -1.0611 
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8.9557 0.6801 0.1452 9.7151 0.9213 -0.6316 9.7112 0.9200 -0.8577 9.8006 0.9484 -1.0257 8.9772 0.6869 -1.0588 

8.9558 0.6801 0.1520 9.7153 0.9213 -0.6493 9.7155 0.9214 -0.8806 9.8008 0.9485 -1.0310 8.9774 0.6870 -1.0438 

8.9600 0.6814 0.1426 9.7193 0.9226 -0.6504 9.7156 0.9214 -0.8661 9.8118 0.9520 -1.0309 8.9819 0.6884 -1.0700 

8.9602 0.6815 0.1412 9.7195 0.9227 -0.6396 9.7197 0.9227 -0.8675 9.8119 0.9520 -1.0364 8.9821 0.6885 -1.0733 

8.9715 0.6851 0.1455 9.7722 0.9394 -0.6510 9.7198 0.9228 -0.8799 9.8160 0.9533 -1.0319 9.7119 0.9202 -1.1969 

8.9716 0.6851 0.1566 9.7724 0.9394 -0.6447 9.7725 0.9395 -0.8861 9.8162 0.9534 -1.0354 9.7120 0.9203 -1.2083 

8.9757 0.6864 0.1451 9.7764 0.9407 -0.6530 9.7727 0.9395 -0.8872 9.8202 0.9546 -1.0308 9.7162 0.9216 -1.2086 

8.9759 0.6865 0.1417 9.7766 0.9408 -0.6524 9.7768 0.9408 -0.8799 9.8204 0.9547 -1.0329 9.7164 0.9217 -1.1961 

8.9804 0.6879 0.1459 9.7809 0.9421 -0.6508 9.7769 0.9409 -0.8879 9.8306 0.9579 -1.0287 9.7206 0.9230 -1.2018 

8.9806 0.6880 0.1380 9.7810 0.9422 -0.6556 9.7812 0.9423 -0.8813 9.8308 0.9580 -1.0313 9.7207 0.9230 -1.1972 

9.7103 0.9197 -0.2174 9.7914 0.9455 -0.6574 9.7814 0.9423 -0.8814 9.8348 0.9593 -1.0295 9.7733 0.9398 -1.2143 

9.7105 0.9198 -0.2034 9.7916 0.9456 -0.6558 9.7918 0.9456 -0.8864 9.8349 0.9593 -1.0314 9.7735 0.9398 -1.2140 

9.7148 0.9212 -0.2210 9.7956 0.9468 -0.6563 9.7919 0.9457 -0.8884 9.8391 0.9606 -1.0300 9.7776 0.9411 -1.2153 

9.7190 0.9225 -0.2127 9.7958 0.9469 -0.6516 9.7960 0.9469 -0.8888 9.8392 0.9607 -1.0315 9.7778 0.9412 -1.2119 

9.7192 0.9225 -0.2254 9.7998 0.9482 -0.6507 9.7961 0.9470 -0.8862 9.8498 0.9640 -1.0259 9.7820 0.9425 -1.2116 

9.7719 0.9393 -0.2262 9.8000 0.9482 -0.6462 9.8001 0.9483 -0.8833 9.8499 0.9641 -1.0233 9.7822 0.9426 -1.2098 

9.7720 0.9393 -0.2201 9.8110 0.9517 -0.6628 9.8003 0.9483 -0.8747 9.8540 0.9654 -1.0272 9.7926 0.9459 -1.2143 

9.7761 0.9406 -0.2351 9.8111 0.9518 -0.6598 9.8113 0.9518 -0.8914 9.8542 0.9654 -1.0289 9.7928 0.9459 -1.2128 

9.7763 0.9407 -0.2292 9.8152 0.9530 -0.6533 9.8115 0.9519 -0.8943 9.8582 0.9667 -1.0261 9.7968 0.9472 -1.2192 

9.7805 0.9420 -0.2297 9.8153 0.9531 -0.6553 9.8155 0.9531 -0.8901 9.8584 0.9668 -1.0235 9.7969 0.9473 -1.2184 

9.7807 0.9421 -0.2355 9.8194 0.9544 -0.6509 9.8157 0.9532 -0.8889 9.9330 0.9904 -1.0316 9.8009 0.9485 -1.2139 

9.7911 0.9454 -0.2281 9.8196 0.9544 -0.6519 9.8198 0.9545 -0.8795 9.9331 0.9905 -1.0304 9.8011 0.9486 -1.2133 

9.7913 0.9454 -0.2260 9.8298 0.9577 -0.6564 9.8199 0.9546 -0.8821 9.9373 0.9918 -1.0439 9.8121 0.9521 -1.2161 

9.7953 0.9467 -0.2294 9.8300 0.9577 -0.6573 9.8301 0.9578 -0.8865 9.9374 0.9919 -1.0378 9.8123 0.9521 -1.2171 

9.7955 0.9468 -0.2242 9.8339 0.9590 -0.6541 9.8303 0.9578 -0.8917 9.9416 0.9932 -1.0405 9.8163 0.9534 -1.2183 

9.7994 0.9480 -0.2260 9.8341 0.9590 -0.6570 9.8343 0.9591 -0.8905 9.9417 0.9932 -1.0361 9.8165 0.9535 -1.2140 
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9.7996 0.9481 -0.2245 9.8383 0.9604 -0.6625 9.8344 0.9592 -0.8919 9.9527 0.9967 -1.0320 9.8206 0.9548 -1.2166 

9.8106 0.9516 -0.2286 9.8384 0.9604 -0.6579 9.8386 0.9605 -0.8841 9.9528 0.9968 -1.0277 9.8207 0.9548 -1.2188 

9.8108 0.9516 -0.2382 9.8490 0.9638 -0.6550 9.8388 0.9605 -0.8857 9.9572 0.9982 -1.0291 9.8309 0.9580 -1.2083 

9.8148 0.9529 -0.2254 9.8491 0.9638 -0.6603 9.8493 0.9639 -0.8832 9.9574 0.9982 -1.0325 9.8311 0.9581 -1.2096 

9.8150 0.9530 -0.2307 9.8532 0.9651 -0.6542 9.8495 0.9639 -0.8878 9.9615 0.9995 -1.0325 9.8351 0.9594 -1.2194 

9.8191 0.9543 -0.2304 9.8534 0.9652 -0.6542 9.8535 0.9652 -0.8851 9.9616 0.9996 -1.0321 9.8353 0.9594 -1.2179 

9.8192 0.9543 -0.2274 9.8574 0.9665 -0.6609 9.8537 0.9653 -0.8870 9.9778 0.0047 -1.0261 9.8394 0.9607 -1.2179 

9.8295 0.9576 -0.2289 9.8576 0.9665 -0.6535 9.8578 0.9666 -0.8889 9.9779 0.0047 -1.0213 9.8396 0.9608 -1.2129 

9.8296 0.9576 -0.2354 9.9321 0.9902 -0.6505 9.8579 0.9666 -0.8865 9.9820 0.0060 -1.0312 9.8501 0.9641 -1.2033 

9.8336 0.9589 -0.2343 9.9323 0.9902 -0.6564 9.9325 0.9903 -0.8889 9.9822 0.0061 -1.0317 9.8503 0.9642 -1.2044 

9.8338 0.9589 -0.2344 9.9364 0.9915 -0.6565 9.9326 0.9903 -0.8916 9.9866 0.0075 -1.0437 9.8544 0.9655 -1.2129 

9.8379 0.9603 -0.2317 9.9366 0.9916 -0.6569 9.9368 0.9917 -0.8962 9.9868 0.0075 -1.0338 9.8546 0.9655 -1.2182 

9.8381 0.9603 -0.2343 9.9407 0.9929 -0.6550 9.9411 0.9930 -0.8878 10.8041 0.2671 -0.8897 9.8586 0.9668 -1.2142 

9.8486 0.9637 -0.2351 9.9409 0.9930 -0.6586 9.9412 0.9931 -0.8885 10.8043 0.2672 -0.8897 9.8587 0.9669 -1.2093 

9.8488 0.9637 -0.2334 9.9518 0.9964 -0.6517 9.9522 0.9965 -0.8816 10.8090 0.2687 -0.8868 9.9333 0.9906 -1.2116 

9.8529 0.9650 -0.2271 9.9520 0.9965 -0.6470 9.9523 0.9966 -0.8812 10.8092 0.2687 -0.8865 9.9335 0.9906 -1.2156 

9.8530 0.9651 -0.2222 9.9564 0.9979 -0.6488 9.9567 0.9980 -0.8881 10.8946 0.2958 -0.8698 9.9376 0.9919 -1.2206 

9.8571 0.9663 -0.2292 9.9566 0.9979 -0.6466 9.9569 0.9981 -0.8794 10.8948 0.2959 -0.8700 9.9377 0.9920 -1.2170 

9.8572 0.9664 -0.2351 9.9607 0.9993 -0.6465 9.9610 0.9994 -0.8784 10.8990 0.2973 -0.8598 9.9419 0.9933 -1.2151 

9.9318 0.9901 -0.2272 9.9609 0.9993 -0.6536 9.9612 0.9994 -0.8821 10.8992 0.2973 -0.8632 9.9421 0.9933 -1.2257 

9.9319 0.9901 -0.2233 9.9768 0.0044 -0.6474 9.9771 0.0045 -0.8781 10.9033 0.2986 -0.8628 9.9530 0.9968 -1.2051 

9.9361 0.9914 -0.2293 9.9770 0.0044 -0.6468 9.9773 0.0045 -0.8795 10.9034 0.2987 -0.8643 9.9532 0.9969 -1.2053 

9.9363 0.9915 -0.2193 9.9812 0.0058 -0.6554 9.9775 0.0046 -0.8833 10.9122 0.3014 -0.8596 9.9576 0.9983 -1.2158 

9.9404 0.9928 -0.2258 9.9813 0.0058 -0.6537 9.9815 0.0059 -0.8905 10.9124 0.3015 -0.8625 9.9577 0.9983 -1.2192 

9.9405 0.9929 -0.2275 9.9858 0.0072 -0.6550 9.9817 0.0059 -0.8923 10.9164 0.3028 -0.8583 9.9618 0.9996 -1.2194 

9.9515 0.9963 -0.2274 9.9859 0.0073 -0.6545 9.9863 0.0074 -0.8997 10.9166 0.3028 -0.8623 9.9620 0.9997 -1.2146 
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9.9516 0.9964 -0.2161 10.8031 0.2668 -0.3437 10.8035 0.2669 -0.6880 10.9206 0.3041 -0.8635 9.9781 0.0048 -1.2093 

9.9561 0.9978 -0.2310 10.8033 0.2668 -0.3467 10.8037 0.2670 -0.6822 10.9208 0.3042 -0.8631 9.9783 0.0048 -1.2125 

9.9562 0.9978 -0.2240 10.8081 0.2684 -0.3422 10.8085 0.2685 -0.6957 10.9290 0.3068 -0.8552 9.9823 0.0061 -1.2231 

9.9604 0.9991 -0.2340 10.8083 0.2684 -0.3469 10.8086 0.2685 -0.7008 10.9292 0.3068 -0.8594 9.9825 0.0062 -1.2264 

9.9605 0.9992 -0.2379 10.8937 0.2956 -0.3084 10.8125 0.2698 -0.6903 10.9333 0.3081 -0.8626 9.9870 0.0076 -1.2257 

9.9765 0.0043 -0.2330 10.8938 0.2956 -0.3017 10.8127 0.2698 -0.6931 10.9334 0.3082 -0.8632 9.9871 0.0076 -1.2214 

9.9766 0.0043 -0.2371 10.8982 0.2970 -0.3030 10.8940 0.2957 -0.6688 10.9374 0.3094 -0.8562 10.8045 0.2672 -1.1161 

9.9808 0.0056 -0.2285 10.8984 0.2971 -0.3053 10.8942 0.2957 -0.6671 10.9376 0.3095 -0.8567 10.8047 0.2673 -1.1093 

9.9810 0.0057 -0.2292 10.9024 0.2983 -0.3005 10.8986 0.2971 -0.6705 11.8234 0.5908 -0.7819 10.8094 0.2688 -1.1055 

9.9854 0.0071 -0.2130 10.9026 0.2984 -0.2992 10.8987 0.2972 -0.6714 11.8236 0.5909 -0.7823 10.8096 0.2689 -1.1015 

9.9856 0.0072 -0.2277 10.9114 0.3012 -0.2983 10.9028 0.2984 -0.6724 11.8274 0.5921 -0.7821 10.8949 0.2960 -1.0996 

10.8027 0.2667 0.1445 10.9115 0.3012 -0.2927 10.9029 0.2985 -0.6682 11.8276 0.5921 -0.7822 10.8951 0.2960 -1.0979 

10.8029 0.2667 0.1476 10.9156 0.3025 -0.2985 10.9117 0.3013 -0.6614 11.8314 0.5934 -0.7791 10.8994 0.2974 -1.0873 

10.8077 0.2683 0.1571 10.9158 0.3026 -0.2947 10.9119 0.3013 -0.6581 11.8316 0.5934 -0.7827 10.8996 0.2974 -1.0863 

10.8079 0.2683 0.1533 10.9198 0.3038 -0.2982 10.9160 0.3026 -0.6669 11.8393 0.5959 -0.7794 10.9036 0.2987 -1.1000 

10.8933 0.2954 0.1996 10.9199 0.3039 -0.2971 10.9161 0.3027 -0.6692 11.8394 0.5959 -0.7754 10.9038 0.2988 -1.0977 

10.8935 0.2955 0.1979 10.9284 0.3066 -0.2870 10.9201 0.3039 -0.6614 11.8433 0.5971 -0.7834 10.9126 0.3016 -1.0993 

10.8979 0.2969 0.2016 10.9324 0.3079 -0.2990 10.9203 0.3040 -0.6620 11.8435 0.5972 -0.7846 10.9127 0.3016 -1.0989 

10.8981 0.2969 0.1974 10.9326 0.3079 -0.2981 10.9285 0.3066 -0.6643 11.8474 0.5984 -0.7816 10.9168 0.3029 -1.1052 

10.9021 0.2982 0.2099 10.9366 0.3092 -0.2872 10.9287 0.3067 -0.6680 11.8476 0.5985 -0.7881 10.9169 0.3029 -1.1023 

10.9022 0.2983 0.2040 10.9367 0.3092 -0.2865 10.9328 0.3080 -0.6622 11.8554 0.6010 -0.7807 10.9210 0.3042 -1.0984 

10.9110 0.3011 0.2064 11.8226 0.5906 -0.1969 10.9329 0.3080 -0.6664 11.8556 0.6010 -0.7836 10.9211 0.3043 -1.1011 

10.9112 0.3011 0.2095 11.8227 0.5906 -0.2017 10.9369 0.3093 -0.6460 11.8597 0.6023 -0.7868 10.9293 0.3069 -1.0899 

10.9153 0.3024 0.2063 11.8266 0.5918 -0.1951 10.9371 0.3093 -0.6460 11.8599 0.6024 -0.7868 10.9295 0.3069 -1.0937 

10.9154 0.3025 0.2087 11.8268 0.5919 -0.1945 11.8229 0.5907 -0.5835 11.8638 0.6037 -0.7844 10.9336 0.3082 -1.0980 

10.9194 0.3037 0.2121 11.8306 0.5931 -0.1957 11.8231 0.5907 -0.5828 11.8640 0.6037 -0.7863 10.9338 0.3083 -1.0951 
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10.9196 0.3038 0.2077 11.8308 0.5932 -0.1935 11.8270 0.5920 -0.5800 11.9000 0.6151 -0.7955 10.9378 0.3095 -1.0781 

10.9321 0.3077 0.2091 11.8384 0.5956 -0.1971 11.8271 0.5920 -0.5836 11.9001 0.6152 -0.7987 10.9379 0.3096 -1.0759 

10.9322 0.3078 0.2144 11.8386 0.5956 -0.1972 11.8310 0.5932 -0.5766 11.9042 0.6165 -0.7913 11.8238 0.5909 -1.0203 

10.9362 0.3091 0.2137 11.8425 0.5969 -0.1952 11.8311 0.5933 -0.5744 11.9043 0.6165 -0.7938 11.8239 0.5910 -1.0224 

10.9364 0.3091 0.2165 11.8426 0.5969 -0.1994 11.8388 0.5957 -0.5744 11.9083 0.6178 -0.7943 11.8278 0.5922 -1.0211 

11.8222 0.5904 0.3168 11.8466 0.5982 -0.2009 11.8389 0.5958 -0.5749 11.9085 0.6178 -0.7985 11.8279 0.5923 -1.0175 

11.8224 0.5905 0.3225 11.8468 0.5982 -0.2019 11.8428 0.5970 -0.5786 11.9165 0.6204 -0.7947 11.8318 0.5935 -1.0164 

11.8263 0.5917 0.3218 11.8546 0.6007 -0.2023 11.8430 0.5970 -0.5831 11.9167 0.6204 -0.7884 11.8320 0.5935 -1.0138 

11.8265 0.5918 0.3243 11.8548 0.6008 -0.2035 11.8470 0.5983 -0.5763 11.9207 0.6217 -0.7898 11.8396 0.5960 -1.0149 

11.8303 0.5930 0.3247 11.8589 0.6021 -0.2018 11.8471 0.5983 -0.5763 11.9209 0.6218 -0.7941 11.8398 0.5960 -1.0148 

11.8305 0.5931 0.3200 11.8590 0.6021 -0.2009 11.8549 0.6008 -0.5807 11.9250 0.6231 -0.7968 11.8436 0.5972 -1.0215 

11.8381 0.5955 0.3166 11.8630 0.6034 -0.2041 11.8551 0.6009 -0.5779 11.9252 0.6231 -0.7979 11.8438 0.5973 -1.0194 

11.8383 0.5955 0.3123 11.8632 0.6035 -0.2045 11.8592 0.6022 -0.5806 11.9332 0.6257 -0.8024 11.8477 0.5985 -1.0247 

11.8421 0.5968 0.3111 11.8991 0.6149 -0.2208 11.8594 0.6022 -0.5804 11.9334 0.6257 -0.8016 11.8479 0.5986 -1.0255 

11.8423 0.5968 0.3157 11.8993 0.6149 -0.2214 11.8634 0.6035 -0.5756 11.9372 0.6270 -0.8045 11.8558 0.6011 -1.0156 

11.8463 0.5981 0.3175 11.9034 0.6162 -0.2190 11.8635 0.6036 -0.5776 11.9374 0.6270 -0.8067 11.8559 0.6011 -1.0169 

11.8464 0.5981 0.3114 11.9035 0.6163 -0.2156 11.8995 0.6150 -0.5967 11.9413 0.6283 -0.7959 11.8601 0.6025 -1.0266 

11.8542 0.6006 0.3175 11.9075 0.6175 -0.2243 11.8996 0.6150 -0.5959 11.9415 0.6283 -0.7991 11.8602 0.6025 -1.0269 

11.8544 0.6007 0.3088 11.9077 0.6176 -0.2290 11.9037 0.6163 -0.5827 11.9499 0.6310 -0.8041 11.8642 0.6038 -1.0178 

11.8585 0.6020 0.3101 11.9157 0.6201 -0.2270 11.9039 0.6164 -0.5718 11.9501 0.6311 -0.8039 11.8644 0.6038 -1.0156 

11.8587 0.6020 0.3111 11.9159 0.6202 -0.2249 11.9079 0.6176 -0.5937 11.9542 0.6324 -0.8008 11.9003 0.6152 -1.0306 

11.8627 0.6033 0.3063 11.9199 0.6215 -0.2324 11.9080 0.6177 -0.5958 11.9544 0.6324 -0.8000 11.9005 0.6153 -1.0343 

11.8628 0.6033 0.3066 11.9201 0.6215 -0.2287 11.9161 0.6202 -0.5923 11.9584 0.6337 -0.7998 11.9045 0.6166 -1.0290 

11.8988 0.6148 0.2877 11.9242 0.6228 -0.2336 11.9162 0.6203 -0.5904 11.9586 0.6337 -0.8022 11.9047 0.6166 -1.0279 

11.8989 0.6148 0.2896 11.9243 0.6229 -0.2319 11.9203 0.6216 -0.5973 11.9665 0.6363 -0.8052 11.9087 0.6179 -1.0306 

11.9030 0.6161 0.2798 11.9324 0.6254 -0.2328 11.9204 0.6216 -0.5956 11.9666 0.6363 -0.8092 11.9088 0.6179 -1.0268 
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11.9032 0.6162 0.2828 11.9325 0.6255 -0.2311 11.9245 0.6229 -0.6037 11.9705 0.6375 -0.8025 11.9169 0.6205 -1.0293 

11.9072 0.6174 0.2791 11.9364 0.6267 -0.2348 11.9247 0.6230 -0.6007 11.9707 0.6376 -0.8003 11.9170 0.6206 -1.0300 

11.9073 0.6175 0.2796 11.9366 0.6268 -0.2325 11.9327 0.6255 -0.6005 11.9747 0.6389 -0.8090 11.9210 0.6218 -1.0249 

11.9154 0.6200 0.2713 11.9405 0.6280 -0.2362 11.9329 0.6256 -0.6005 11.9749 0.6389 -0.8100 11.9212 0.6219 -1.0273 

11.9155 0.6201 0.2759 11.9407 0.6281 -0.2363 11.9368 0.6268 -0.6025 11.9831 0.6415 -0.8111 11.9253 0.6232 -1.0354 

11.9196 0.6214 0.2771 11.9491 0.6307 -0.2437 11.9369 0.6269 -0.6071 11.9833 0.6416 -0.8148 11.9255 0.6232 -1.0352 

11.9197 0.6214 0.2759 11.9492 0.6308 -0.2400 11.9409 0.6281 -0.5958 11.9873 0.6429 -0.8136 11.9335 0.6258 -1.0359 

11.9238 0.6227 0.2728 11.9534 0.6321 -0.2367 11.9410 0.6282 -0.5970 11.9875 0.6429 -0.8169 11.9337 0.6258 -1.0370 

11.9240 0.6228 0.2728 11.9536 0.6322 -0.2345 11.9494 0.6308 -0.6157 11.9915 0.6442 -0.8058 11.9376 0.6271 -1.0362 

11.9320 0.6253 0.2642 11.9576 0.6334 -0.2453 11.9496 0.6309 -0.6068 11.9917 0.6442 -0.8098 11.9377 0.6271 -1.0377 

11.9322 0.6254 0.2656 11.9578 0.6335 -0.2466 11.9537 0.6322 -0.5933 12.0017 0.6474 -0.8128 11.9417 0.6284 -1.0278 

11.9361 0.6266 0.2665 11.9656 0.6360 -0.2509 11.9539 0.6323 -0.5868 12.0018 0.6475 -0.8103 11.9418 0.6284 -1.0316 

11.9362 0.6266 0.2622 11.9658 0.6360 -0.2426 11.9579 0.6335 -0.6047 12.0061 0.6488 -0.8129 11.9503 0.6311 -1.0372 

11.9402 0.6279 0.2574 11.9697 0.6373 -0.2481 11.9581 0.6336 -0.6094 12.0062 0.6489 -0.8169 11.9504 0.6312 -1.0361 

11.9403 0.6280 0.2669 11.9699 0.6373 -0.2441 11.9660 0.6361 -0.6067 12.0102 0.6501 -0.8202 11.9545 0.6325 -1.0322 

11.9487 0.6306 0.2535 11.9739 0.6386 -0.2543 11.9661 0.6361 -0.6015 12.0104 0.6502 -0.8214 11.9547 0.6325 -1.0310 

11.9489 0.6307 0.2574 11.9741 0.6387 -0.2518 11.9700 0.6374 -0.6049 12.8320 0.9111 -1.0117 11.9587 0.6338 -1.0277 

11.9531 0.6320 0.2494 11.9823 0.6413 -0.2586 11.9702 0.6374 -0.6061 12.9134 0.9370 -1.0195 11.9589 0.6339 -1.0318 

11.9532 0.6320 0.2593 11.9825 0.6413 -0.2589 11.9742 0.6387 -0.6165 12.9571 0.9508 -1.0277 11.9668 0.6364 -1.0317 

11.9573 0.6333 0.2464 11.9865 0.6426 -0.2570 11.9744 0.6388 -0.6115 12.9578 0.9511 -1.0239 11.9670 0.6364 -1.0301 

11.9574 0.6334 0.2542 11.9866 0.6427 -0.2622 11.9826 0.6414 -0.6117 12.9585 0.9513 -1.0333 11.9708 0.6376 -1.0333 

11.9653 0.6359 0.2459 11.9907 0.6439 -0.2601 11.9828 0.6414 -0.6146 12.9813 0.9585 -1.0275 11.9710 0.6377 -1.0305 

11.9655 0.6359 0.2418 11.9908 0.6440 -0.2526 11.9868 0.6427 -0.6124 12.9820 0.9588 -1.0269 11.9751 0.6390 -1.0463 

11.9694 0.6372 0.2461 12.0009 0.6472 -0.2618 11.9870 0.6428 -0.6185 12.9827 0.9590 -1.0280 11.9752 0.6390 -1.0473 

11.9695 0.6372 0.2390 12.0010 0.6472 -0.2631 11.9910 0.6440 -0.6127 13.0018 0.9651 -1.0236 11.9834 0.6416 -1.0403 

11.9736 0.6385 0.2411 12.0052 0.6486 -0.2648 11.9912 0.6441 -0.6088 13.0025 0.9653 -1.0248 11.9836 0.6417 -1.0391 
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11.9737 0.6386 0.2420 12.0054 0.6486 -0.2727 12.0012 0.6473 -0.6080 13.0031 0.9655 -1.0242 11.9876 0.6430 -1.0421 

11.9819 0.6412 0.2222 12.0094 0.6499 -0.2577 12.0014 0.6473 -0.6141 13.0164 0.9697 -1.0372 11.9878 0.6430 -1.0439 

11.9821 0.6412 0.2316 12.0096 0.6499 -0.2537 12.0056 0.6487 -0.6216 13.0170 0.9699 -1.0347 11.9918 0.6443 -1.0437 

11.9861 0.6425 0.2228 12.9077 0.9352 -0.6596 12.0057 0.6487 -0.6230 13.0361 0.9759 -1.0426 11.9920 0.6444 -1.0383 

11.9863 0.6425 0.2219 12.9091 0.9356 -0.6449 12.0097 0.6500 -0.6153 13.7146 0.1914 -0.9396 12.0020 0.6475 -1.0371 

11.9903 0.6438 0.2242 12.9541 0.9499 -0.6380 12.0099 0.6500 -0.6108 13.7153 0.1916 -0.9465 12.0022 0.6476 -1.0369 

11.9905 0.6439 0.2312 12.9769 0.9571 -0.6466 12.9099 0.9359 -0.8896 13.7571 0.2049 -0.9325 12.0064 0.6489 -1.0484 

12.0005 0.6471 0.2146 12.9775 0.9573 -0.6508 12.9113 0.9363 -0.8793 13.7578 0.2052 -0.9317 12.0066 0.6490 -1.0448 

12.0007 0.6471 0.2124 12.9782 0.9575 -0.6575 12.9549 0.9502 -0.8810 13.7850 0.2138 -0.9211 12.0106 0.6503 -1.0455 

12.0049 0.6485 0.2171 12.9975 0.9637 -0.6429 12.9556 0.9504 -0.8849 13.7856 0.2140 -0.9270 12.0107 0.6503 -1.0462 

12.0051 0.6485 0.2150 12.9982 0.9639 -0.6489 12.9562 0.9506 -0.8835 13.7963 0.2174 -0.9225 12.9170 0.9381 -1.2103 

12.0091 0.6498 0.2129 13.0121 0.9683 -0.6633 12.9791 0.9578 -0.8843 13.7970 0.2176 -0.9219 12.9593 0.9516 -1.2166 

12.0092 0.6498 0.2039 13.0128 0.9686 -0.6639 12.9797 0.9580 -0.8886 13.8103 0.2218 -0.9177 12.9600 0.9518 -1.2150 

12.8248 0.9088 -0.2152 13.0335 0.9751 -0.6664 12.9804 0.9583 -0.8861 13.8110 0.2220 -0.9201 12.9606 0.9520 -1.2154 

12.9054 0.9344 -0.2177 13.7103 0.1900 -0.4599 13.0003 0.9646 -0.8847 13.8243 0.2262 -0.9193 12.9848 0.9597 -1.2144 

12.9512 0.9490 -0.2272 13.7109 0.1903 -0.4698 13.0010 0.9648 -0.8894 13.8249 0.2265 -0.9183 13.0039 0.9657 -1.2119 

12.9519 0.9492 -0.2139 13.7530 0.2036 -0.4422 13.0141 0.9690 -0.8927 13.8343 0.2294 -0.9148 13.0047 0.9660 -1.2106 

12.9744 0.9563 -0.2390 13.7537 0.2038 -0.4394 13.7123 0.1907 -0.7727 13.8349 0.2296 -0.9130 13.0053 0.9662 -1.2150 

12.9751 0.9566 -0.2380 13.7810 0.2125 -0.4263 13.7130 0.1909 -0.7721 13.8448 0.2328 -0.9163 13.0183 0.9703 -1.2227 

12.9758 0.9568 -0.2329 13.7816 0.2127 -0.4291 13.7551 0.2043 -0.7522 13.8455 0.2330 -0.9126 13.0189 0.9705 -1.2212 

12.9954 0.9630 -0.2114 13.7922 0.2161 -0.4187 13.7558 0.2045 -0.7539 13.8814 0.2444 -0.9019 13.0300 0.9740 -1.2006 

12.9960 0.9632 -0.2505 13.7928 0.2163 -0.4248 13.7830 0.2131 -0.7415 13.8821 0.2446 -0.9041 13.0373 0.9763 -1.2175 

12.9966 0.9634 -0.2204 13.8062 0.2205 -0.4183 13.7836 0.2133 -0.7440 13.9046 0.2518 -0.8892 13.7166 0.1921 -1.1580 

13.0109 0.9680 -0.2497 13.8069 0.2207 -0.4139 13.7942 0.2167 -0.7418 13.9053 0.2520 -0.8943 13.7172 0.1923 -1.1584 

13.0322 0.9747 -0.2282 13.8201 0.2249 -0.4037 13.7949 0.2169 -0.7446 13.9148 0.2550 -0.8952 13.7593 0.2056 -1.1462 

13.7082 0.1894 -0.0018 13.8207 0.2251 -0.4092 13.8084 0.2212 -0.7316 13.9155 0.2552 -0.8945 13.7599 0.2058 -1.1493 
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13.7088 0.1896 -0.0092 13.8303 0.2282 -0.4043 13.8090 0.2214 -0.7363 13.9283 0.2593 -0.8905 13.7870 0.2144 -1.1462 

13.7510 0.2030 0.0235 13.8310 0.2284 -0.4023 13.8222 0.2256 -0.7353 13.9290 0.2595 -0.8878 13.7876 0.2146 -1.1446 

13.7517 0.2032 0.0212 13.8404 0.2314 -0.4009 13.8229 0.2258 -0.7301 
   

13.7983 0.2180 -1.1411 

13.7788 0.2118 0.0485 13.8412 0.2316 -0.4005 13.8323 0.2288 -0.7308 
   

13.7989 0.2182 -1.1430 

13.7794 0.2120 0.0462 13.8770 0.2430 -0.3764 13.8330 0.2290 -0.7342 
   

13.8124 0.2225 -1.1381 

13.7902 0.2154 0.0532 13.8779 0.2433 -0.3785 13.8427 0.2321 -0.7261 
   

13.8130 0.2227 -1.1395 

13.7909 0.2157 0.0549 13.9003 0.2504 -0.3670 13.8435 0.2323 -0.7314 
   

13.8263 0.2269 -1.1360 

13.8042 0.2199 0.0614 13.9009 0.2506 -0.3706 13.8794 0.2437 -0.7135 
   

13.8270 0.2271 -1.1370 

13.8048 0.2201 0.0697 13.9108 0.2537 -0.3628 13.8800 0.2440 -0.7198 
   

13.8362 0.2300 -1.1310 

13.8181 0.2243 0.0758 13.9114 0.2539 -0.3659 13.9026 0.2511 -0.7091 
   

13.8368 0.2302 -1.1328 

13.8188 0.2245 0.0747 13.9234 0.2577 -0.3579 13.9032 0.2513 -0.7151 
   

13.8469 0.2334 -1.1319 

13.8284 0.2276 0.0741 13.9241 0.2580 -0.3550 13.9127 0.2544 -0.7046 
   

13.8475 0.2336 -1.1278 

13.8290 0.2277 0.0680 
   

13.9134 0.2546 -0.7040 
   

13.8963 0.2491 -1.1250 

13.8383 0.2307 0.0871 
   

13.9263 0.2587 -0.7043 
   

13.8969 0.2493 -1.1210 

13.8390 0.2309 0.0847 
   

13.9271 0.2589 -0.7027 
   

13.9066 0.2524 -1.1197 

13.8733 0.2418 0.0992 
         

13.9073 0.2526 -1.1175 

13.8744 0.2422 0.1090 
         

13.9174 0.2558 -1.1108 

13.8983 0.2498 0.1174 
         

13.9181 0.2560 -1.1123 

13.8990 0.2500 0.1212 
         

13.9304 0.2600 -1.1161 

13.9087 0.2531 0.1236 
         

13.9311 0.2602 -1.1129 

13.9094 0.2533 0.1234 
            

13.9213 0.2571 0.1314 
            

13.9219 0.2573 0.1294 
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